Namespaces
Variants
Actions

Difference between revisions of "Branching process with a finite number of particle types"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
b0175501.png
 +
$#A+1 = 36 n = 0
 +
$#C+1 = 36 : ~/encyclopedia/old_files/data/B017/B.0107550 Branching process with a finite number of particle types
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A model of a branching process which is a special case of a Markov process with a countable set of states. The state of the branching vector is described by the random process
 
A model of a branching process which is a special case of a Markov process with a countable set of states. The state of the branching vector is described by the random process
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175501.png" /></td> </tr></table>
+
$$
 +
\mu (t)  = \
 +
( \mu _ {1} (t) \dots
 +
\mu _ {n} (t)),
 +
$$
  
the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175502.png" />-th component, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175503.png" />, of which shows that at time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175504.png" /> there are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175505.png" /> particles of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175506.png" />. The principal property by which branching processes differ from Markov processes is that the particles existing at the moment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175507.png" /> produce daughter particles at any subsequent moment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175508.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b0175509.png" />, in a mutually independent manner. The generating functions
+
the $  k $-
 +
th component, $  \mu _ {k} (t) $,  
 +
of which shows that at time $  t $
 +
there are $  \mu _ {k} (t) $
 +
particles of type $  T _ {k} $.  
 +
The principal property by which branching processes differ from Markov processes is that the particles existing at the moment $  t _ {1} $
 +
produce daughter particles at any subsequent moment $  t _ {1} + t $,
 +
$  t > 0 $,  
 +
in a mutually independent manner. The generating functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755010.png" /></td> </tr></table>
+
$$
 +
F _ {k} (t, x _ {1} \dots x _ {n} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755011.png" /></td> </tr></table>
+
$$
 +
= \
 +
{\mathsf E} (x _ {1} ^ {\mu _ {1} (t) } \dots x _ {n} ^ {\mu _ {n} (t) } \mid  \mu _ {k} (0) = 1; \mu _ {i} (0) = 0, i \neq k)
 +
$$
  
 
satisfy the system of equations
 
satisfy the system of equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755012.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
F _ {k} (t + \tau , x _ {1} \dots x _ {n} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755013.png" /></td> </tr></table>
+
$$
 +
= \
 +
F _ {k} (t, F _ {1} ( \tau , x _ {1} \dots x _ {n} ) \dots F _ {n} ( \tau , x _ {1} \dots x _ {n} ))
 +
$$
  
 
with initial conditions
 
with initial conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755014.png" /></td> </tr></table>
+
$$
 +
F _ {k} (0, x _ {1} \dots x _ {n} )  = x _ {k} ,\ \
 +
k = 1 \dots n.
 +
$$
  
 
The equations (*) are satisfied by discrete-time and continuous-time processes.
 
The equations (*) are satisfied by discrete-time and continuous-time processes.
Line 23: Line 60:
 
In the case of discrete time, the matrix of mathematical expectations
 
In the case of discrete time, the matrix of mathematical expectations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755015.png" /></td> </tr></table>
+
$$
 +
A (t)  = \
 +
\| A _ {ij} (t) \| ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755016.png" /></td> </tr></table>
+
$$
 +
\left . A _ {ij} (t)  =
 +
\frac{\partial  F _ {i} }{\partial  x _ {j}  }
 +
\right | _ {x _ {1}  = \dots = x _ {n} = 1 } ,
 +
$$
  
is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755017.png" />-th power of the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755018.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755019.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755020.png" /> is indecomposable and aperiodic, it has a simple positive eigen value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755021.png" /> which is larger than the moduli of the other eigen values. In this case, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755022.png" />,
+
is the $  t $-
 +
th power of the matrix $  A = A(1) $:  
 +
$  A(t) = A  ^ {t} $.  
 +
If $  A $
 +
is indecomposable and aperiodic, it has a simple positive eigen value $  \lambda $
 +
which is larger than the moduli of the other eigen values. In this case, as $  t \rightarrow \infty $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755023.png" /></td> </tr></table>
+
$$
 +
A _ {ij} (t)  = \
 +
u _ {i} v _ {j} \lambda  ^ {t} + o
 +
( \lambda  ^ {t} ),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755024.png" /> are the right and left eigen vectors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755025.png" /> which correspond to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755026.png" />. Branching processes with an indecomposable matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755027.png" /> are said to be subcritical if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755028.png" />, supercritical if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755029.png" /> and critical if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755030.png" /> and if at least one of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755031.png" /> is non-linear. The concept of criticality is defined in a similar manner for continuous-time processes.
+
where $  ( u _ {1} \dots u _ {n} ), ( v _ {1} \dots v _ {n} ) $
 +
are the right and left eigen vectors of $  A $
 +
which correspond to $  \lambda $.  
 +
Branching processes with an indecomposable matrix $  A $
 +
are said to be subcritical if $  \lambda < 1 $,  
 +
supercritical if $  \lambda < 1 $
 +
and critical if $  \lambda = 1 $
 +
and if at least one of the functions $  F _ {k} (1, x _ {1} \dots x _ {n} ) $
 +
is non-linear. The concept of criticality is defined in a similar manner for continuous-time processes.
  
The asymptotic properties of a branching process significantly depend on its criticality. Subcritical and critical processes die out with probability one. The asymptotic formulas (as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755032.png" />) for the probabilities,
+
The asymptotic properties of a branching process significantly depend on its criticality. Subcritical and critical processes die out with probability one. The asymptotic formulas (as $  t \rightarrow \infty $)  
 +
for the probabilities,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755033.png" /></td> </tr></table>
+
$$
 +
Q _ {k} (t)  = \
 +
{\mathsf P} \{ \mu _ {1} (t) + \dots +
 +
\mu _ {n} (t) > 0
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755034.png" /></td> </tr></table>
+
$$
 +
{}\mid  \mu _ {k} (0) = 1; \mu _ {i} (0) = 0, i \neq k \} ,
 +
$$
  
and the theorems on limit distributions of the number of particles [[#References|[2]]], are analogous to the respective results for processes involving single-type particles (cf. [[Branching process|Branching process]]). Asymptotic properties in the near-critical case (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b017/b017550/b01755036.png" />) have been studied [[#References|[3]]]. Processes with a decomposable matrix of mathematical expectations have also been investigated [[#References|[4]]].
+
and the theorems on limit distributions of the number of particles [[#References|[2]]], are analogous to the respective results for processes involving single-type particles (cf. [[Branching process|Branching process]]). Asymptotic properties in the near-critical case ( $  t \rightarrow \infty $,  
 +
$  \lambda \rightarrow 1 $)  
 +
have been studied [[#References|[3]]]. Processes with a decomposable matrix of mathematical expectations have also been investigated [[#References|[4]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  N.A. Dmitriev,  "Branching stochastic processes"  ''Dokl. Akad. Nauk SSSR'' , '''56''' :  1  (1947)  pp. 5–8  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. [B.A. Sevast'yanov] Sewastjanow,  "Verzweigungsprozesse" , Akad. Wissenschaft. DDR  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.P. Chistyakov,  "On transition phenomena in branching stochastic processes with several types of particles"  ''Theory Probab. Appl.'' , '''17''' :  4  (1972)  pp. 631–639  ''Teor. Veroyatnost. i Primenen.'' , '''17''' :  4  (1972)  pp. 669–678</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Y. Ogura,  "Asymptotic behaviour of multitype Galton–Watson processes"  ''J. Math. Kyoto Univ.'' , '''15'''  (1975)  pp. 251–302</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  N.A. Dmitriev,  "Branching stochastic processes"  ''Dokl. Akad. Nauk SSSR'' , '''56''' :  1  (1947)  pp. 5–8  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  B.A. [B.A. Sevast'yanov] Sewastjanow,  "Verzweigungsprozesse" , Akad. Wissenschaft. DDR  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.P. Chistyakov,  "On transition phenomena in branching stochastic processes with several types of particles"  ''Theory Probab. Appl.'' , '''17''' :  4  (1972)  pp. 631–639  ''Teor. Veroyatnost. i Primenen.'' , '''17''' :  4  (1972)  pp. 669–678</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  Y. Ogura,  "Asymptotic behaviour of multitype Galton–Watson processes"  ''J. Math. Kyoto Univ.'' , '''15'''  (1975)  pp. 251–302</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Additional references can be found in the article [[Branching process|Branching process]].
 
Additional references can be found in the article [[Branching process|Branching process]].

Latest revision as of 06:29, 30 May 2020


A model of a branching process which is a special case of a Markov process with a countable set of states. The state of the branching vector is described by the random process

$$ \mu (t) = \ ( \mu _ {1} (t) \dots \mu _ {n} (t)), $$

the $ k $- th component, $ \mu _ {k} (t) $, of which shows that at time $ t $ there are $ \mu _ {k} (t) $ particles of type $ T _ {k} $. The principal property by which branching processes differ from Markov processes is that the particles existing at the moment $ t _ {1} $ produce daughter particles at any subsequent moment $ t _ {1} + t $, $ t > 0 $, in a mutually independent manner. The generating functions

$$ F _ {k} (t, x _ {1} \dots x _ {n} ) = $$

$$ = \ {\mathsf E} (x _ {1} ^ {\mu _ {1} (t) } \dots x _ {n} ^ {\mu _ {n} (t) } \mid \mu _ {k} (0) = 1; \mu _ {i} (0) = 0, i \neq k) $$

satisfy the system of equations

$$ \tag{* } F _ {k} (t + \tau , x _ {1} \dots x _ {n} ) = $$

$$ = \ F _ {k} (t, F _ {1} ( \tau , x _ {1} \dots x _ {n} ) \dots F _ {n} ( \tau , x _ {1} \dots x _ {n} )) $$

with initial conditions

$$ F _ {k} (0, x _ {1} \dots x _ {n} ) = x _ {k} ,\ \ k = 1 \dots n. $$

The equations (*) are satisfied by discrete-time and continuous-time processes.

In the case of discrete time, the matrix of mathematical expectations

$$ A (t) = \ \| A _ {ij} (t) \| , $$

$$ \left . A _ {ij} (t) = \frac{\partial F _ {i} }{\partial x _ {j} } \right | _ {x _ {1} = \dots = x _ {n} = 1 } , $$

is the $ t $- th power of the matrix $ A = A(1) $: $ A(t) = A ^ {t} $. If $ A $ is indecomposable and aperiodic, it has a simple positive eigen value $ \lambda $ which is larger than the moduli of the other eigen values. In this case, as $ t \rightarrow \infty $,

$$ A _ {ij} (t) = \ u _ {i} v _ {j} \lambda ^ {t} + o ( \lambda ^ {t} ), $$

where $ ( u _ {1} \dots u _ {n} ), ( v _ {1} \dots v _ {n} ) $ are the right and left eigen vectors of $ A $ which correspond to $ \lambda $. Branching processes with an indecomposable matrix $ A $ are said to be subcritical if $ \lambda < 1 $, supercritical if $ \lambda < 1 $ and critical if $ \lambda = 1 $ and if at least one of the functions $ F _ {k} (1, x _ {1} \dots x _ {n} ) $ is non-linear. The concept of criticality is defined in a similar manner for continuous-time processes.

The asymptotic properties of a branching process significantly depend on its criticality. Subcritical and critical processes die out with probability one. The asymptotic formulas (as $ t \rightarrow \infty $) for the probabilities,

$$ Q _ {k} (t) = \ {\mathsf P} \{ \mu _ {1} (t) + \dots + \mu _ {n} (t) > 0 $$

$$ {}\mid \mu _ {k} (0) = 1; \mu _ {i} (0) = 0, i \neq k \} , $$

and the theorems on limit distributions of the number of particles [2], are analogous to the respective results for processes involving single-type particles (cf. Branching process). Asymptotic properties in the near-critical case ( $ t \rightarrow \infty $, $ \lambda \rightarrow 1 $) have been studied [3]. Processes with a decomposable matrix of mathematical expectations have also been investigated [4].

References

[1] A.N. Kolmogorov, N.A. Dmitriev, "Branching stochastic processes" Dokl. Akad. Nauk SSSR , 56 : 1 (1947) pp. 5–8 (In Russian)
[2] B.A. [B.A. Sevast'yanov] Sewastjanow, "Verzweigungsprozesse" , Akad. Wissenschaft. DDR (1974) (Translated from Russian)
[3] V.P. Chistyakov, "On transition phenomena in branching stochastic processes with several types of particles" Theory Probab. Appl. , 17 : 4 (1972) pp. 631–639 Teor. Veroyatnost. i Primenen. , 17 : 4 (1972) pp. 669–678
[4] Y. Ogura, "Asymptotic behaviour of multitype Galton–Watson processes" J. Math. Kyoto Univ. , 15 (1975) pp. 251–302

Comments

Additional references can be found in the article Branching process.

How to Cite This Entry:
Branching process with a finite number of particle types. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Branching_process_with_a_finite_number_of_particle_types&oldid=16578
This article was adapted from an original article by V.P. Chistyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article