Namespaces
Variants
Actions

Difference between revisions of "Box spline"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The box spline <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108001.png" /> associated with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108002.png" />-matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108003.png" /> of its directions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108004.png" /> (assumed non-zero) is the distribution defined inductively by
+
<!--
 +
b1108001.png
 +
$#A+1 = 17 n = 0
 +
$#C+1 = 17 : ~/encyclopedia/old_files/data/B110/B.1100800 Box spline
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108005.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108006.png" /> the point evaluation at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108007.png" />. This implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108008.png" />, with the integral taken over the half-open unit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b1108009.png" />-cube <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080010.png" />.
+
The box spline  $  M _  \Xi  $
 +
associated with the $  ( s \times n ) $-
 +
matrix  $  \Xi = [ \xi _ {1} \dots \xi _ {n} ] $
 +
of its directions  $  \xi _ {i} $(
 +
assumed non-zero) is the distribution defined inductively by
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080011.png" /> is (representable as) a piecewise-polynomial function on the linear hull <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080012.png" /> of its directions, with support in the convex hull of its directions, its polynomial degree being equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080013.png" />, its discontinuities on hyperplanes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080014.png" /> spanned by its directions, and its smoothness across such a hyperplane determined by the number of directions lying in that hyperplane.
+
$$
 +
M _ {[ \Xi, \zeta ] }  = \int\limits _ { 0 } ^ { 1 }  {M _  \Xi  ( \cdot - t \zeta ) }  {d t }
 +
$$
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110800/b11080017.png" /> is the uniform or cardinal B-spline. Correspondingly, the extant box spline theory (see [[#References|[a1]]]) is a partial lifting of Schoenberg's cardinal spline theory [[#References|[a2]]]. Its highlights include a study of the linear independence of the integer translates of a box spline (with integer directions), the shift-invariant spaces spanned by the integer translates of one or more box splines, the dimension of the space of polynomials contained in such a box spline space, the refinability of such box splines and the related subdivision schemes and discrete box splines.
+
with  $  M _ {[ ] }  $
 +
the point evaluation at  $  0 \in \mathbf R  ^ {s} $.  
 +
This implies that  $  M _  \Xi  \phi = \int {\phi ( \Xi t ) }  {d t } $,
 +
with the integral taken over the half-open unit  $  n $-
 +
cube  $  [ 0,1 )  ^ {n} $.
 +
 
 +
$  M _  \Xi  $
 +
is (representable as) a piecewise-polynomial function on the linear hull  $  { \mathop{\rm ran} } \Xi $
 +
of its directions, with support in the convex hull of its directions, its polynomial degree being equal to  $  s - { \mathop{\rm dim} } { \mathop{\rm ran} } \Xi $,
 +
its discontinuities on hyperplanes in  $  { \mathop{\rm ran} } \Xi $
 +
spanned by its directions, and its smoothness across such a hyperplane determined by the number of directions lying in that hyperplane.
 +
 
 +
For  $  s = 1 $
 +
and  $  \Xi = [ 1 \dots 1 ] $,
 +
$  M _  \Xi  $
 +
is the uniform or cardinal B-spline. Correspondingly, the extant box spline theory (see [[#References|[a1]]]) is a partial lifting of Schoenberg's cardinal spline theory [[#References|[a2]]]. Its highlights include a study of the linear independence of the integer translates of a box spline (with integer directions), the shift-invariant spaces spanned by the integer translates of one or more box splines, the dimension of the space of polynomials contained in such a box spline space, the refinability of such box splines and the related subdivision schemes and discrete box splines.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. de Boor,  K. Höllig,  S. Riemenschneider,  "Box splines" , ''Appl. Math. Sci.'' , '''98''' , Springer  (1993)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.J. Schoenberg,  "Cardinal spline interpolation" , ''CMBS'' , SIAM  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C. de Boor,  K. Höllig,  S. Riemenschneider,  "Box splines" , ''Appl. Math. Sci.'' , '''98''' , Springer  (1993)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.J. Schoenberg,  "Cardinal spline interpolation" , ''CMBS'' , SIAM  (1973)</TD></TR></table>

Latest revision as of 06:29, 30 May 2020


The box spline $ M _ \Xi $ associated with the $ ( s \times n ) $- matrix $ \Xi = [ \xi _ {1} \dots \xi _ {n} ] $ of its directions $ \xi _ {i} $( assumed non-zero) is the distribution defined inductively by

$$ M _ {[ \Xi, \zeta ] } = \int\limits _ { 0 } ^ { 1 } {M _ \Xi ( \cdot - t \zeta ) } {d t } $$

with $ M _ {[ ] } $ the point evaluation at $ 0 \in \mathbf R ^ {s} $. This implies that $ M _ \Xi \phi = \int {\phi ( \Xi t ) } {d t } $, with the integral taken over the half-open unit $ n $- cube $ [ 0,1 ) ^ {n} $.

$ M _ \Xi $ is (representable as) a piecewise-polynomial function on the linear hull $ { \mathop{\rm ran} } \Xi $ of its directions, with support in the convex hull of its directions, its polynomial degree being equal to $ s - { \mathop{\rm dim} } { \mathop{\rm ran} } \Xi $, its discontinuities on hyperplanes in $ { \mathop{\rm ran} } \Xi $ spanned by its directions, and its smoothness across such a hyperplane determined by the number of directions lying in that hyperplane.

For $ s = 1 $ and $ \Xi = [ 1 \dots 1 ] $, $ M _ \Xi $ is the uniform or cardinal B-spline. Correspondingly, the extant box spline theory (see [a1]) is a partial lifting of Schoenberg's cardinal spline theory [a2]. Its highlights include a study of the linear independence of the integer translates of a box spline (with integer directions), the shift-invariant spaces spanned by the integer translates of one or more box splines, the dimension of the space of polynomials contained in such a box spline space, the refinability of such box splines and the related subdivision schemes and discrete box splines.

References

[a1] C. de Boor, K. Höllig, S. Riemenschneider, "Box splines" , Appl. Math. Sci. , 98 , Springer (1993)
[a2] I.J. Schoenberg, "Cardinal spline interpolation" , CMBS , SIAM (1973)
How to Cite This Entry:
Box spline. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Box_spline&oldid=16133
This article was adapted from an original article by C. de Boor (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article