Namespaces
Variants
Actions

Difference between revisions of "Biharmonic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162101.png" /> of real variables, defined in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162102.png" /> of the Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162103.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162104.png" />, with continuous partial derivatives up to the fourth order inclusive, that satisfies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162105.png" /> the equation
+
<!--
 +
b0162101.png
 +
$#A+1 = 30 n = 0
 +
$#C+1 = 30 : ~/encyclopedia/old_files/data/B016/B.0106210 Biharmonic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162106.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162107.png" /> is the Laplace operator. This equation is known as the biharmonic equation. The class of biharmonic functions includes the class of harmonic functions and is a subclass of the class of poly-harmonic functions (cf. [[Harmonic function|Harmonic function]]; [[Poly-harmonic function|Poly-harmonic function]]). Each biharmonic function is an analytic function of the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162108.png" />.
+
A function  $  u(x) = u(x _ {1} \dots x _ {n} ) $
 +
of real variables, defined in a domain  $  D $
 +
of the Euclidean space  $  \mathbf R  ^ {n} $,
 +
$  n \geq  2 $,
 +
with continuous partial derivatives up to the fourth order inclusive, that satisfies in  $  D $
 +
the equation
  
From the point of view of practical applications the biharmonic functions in two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b0162109.png" /> are the most important. Such biharmonic functions can be represented using harmonic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621010.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621011.png" />, in the form
+
$$
 +
\Delta  ^ {2} u  \equiv \
 +
\Delta ( \Delta u)  = 0,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621012.png" /></td> </tr></table>
+
where  $  \Delta $
 +
is the Laplace operator. This equation is known as the biharmonic equation. The class of biharmonic functions includes the class of harmonic functions and is a subclass of the class of poly-harmonic functions (cf. [[Harmonic function|Harmonic function]]; [[Poly-harmonic function|Poly-harmonic function]]). Each biharmonic function is an analytic function of the coordinates  $  x _ {i} $.
 +
 
 +
From the point of view of practical applications the biharmonic functions in two variables  $  u(x _ {1} , x _ {2} ) $
 +
are the most important. Such biharmonic functions can be represented using harmonic functions  $  u _ {1} , u _ {2} $
 +
or  $  v _ {1} , v _ {2} $,
 +
in the form
 +
 
 +
$$
 +
u(x _ {1} , x _ {2} )  = \
 +
x _ {1} u _ {1} (x _ {1} , x _ {2} ) +
 +
u _ {2} (x _ {1} , x _ {2} )
 +
$$
  
 
or
 
or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621013.png" /></td> </tr></table>
+
$$
 +
u(x _ {1} , x _ {2} )  = \
 +
(r  ^ {2} -r _ {0}  ^ {2} )
 +
v _ {1} (x _ {1} , x _ {2} ) +
 +
v _ {2} (x _ {1} , x _ {2} ),
 +
$$
 +
 
 +
where  $  r  ^ {2} = x _ {1}  ^ {2} + x _ {2}  ^ {2} $,
 +
while  $  r _ {0}  ^ {2} $
 +
is a constant. The main boundary value problem for biharmonic functions is the following: To find a biharmonic function in the domain  $  D $
 +
that is continuous together with its first-order derivatives in the closed domain  $  \overline{D}\; = D \cup C $
 +
and satisfies on the boundary  $  C $
 +
the conditions
 +
 
 +
$$ \tag{* }
 +
\left . u \right | _ {C}  = \
 +
f _ {1} (s),\ \
 +
\left .
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621014.png" />, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621015.png" /> is a constant. The main boundary value problem for biharmonic functions is the following: To find a biharmonic function in the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621016.png" /> that is continuous together with its first-order derivatives in the closed domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621017.png" /> and satisfies on the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621018.png" /> the conditions
+
\frac{\partial  u }{\partial  n }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
\right | _ {C}  = \
 +
f _ {2} (s),
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621020.png" /> is the derivative with respect to the normal on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621021.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621022.png" /> are given continuous functions of the arc length <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621023.png" /> on the contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621024.png" />. The above representations of biharmonic functions give the solution of problem (*) in an explicit form for the case of the disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621025.png" />, starting from the Poisson integral for harmonic functions [[#References|[1]]].
+
where $  \partial  u / \partial  n $
 +
is the derivative with respect to the normal on $  C $,  
 +
and $  f _ {1} (s), f _ {2} (s) $
 +
are given continuous functions of the arc length $  s $
 +
on the contour $  C $.  
 +
The above representations of biharmonic functions give the solution of problem (*) in an explicit form for the case of the disc $  D $,  
 +
starting from the Poisson integral for harmonic functions [[#References|[1]]].
  
 
Biharmonic functions in two variables may also be represented as follows:
 
Biharmonic functions in two variables may also be represented as follows:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621026.png" /></td> </tr></table>
+
$$
 +
u (x _ {1} , x _ {2} )  = \
 +
\mathop{\rm Re} \{ \overline{z}\; \phi (z) +
 +
\chi (z) \} =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621027.png" /></td> </tr></table>
+
$$
 +
= \
 +
{
 +
\frac{1}{2}
 +
} \{ \overline{z}\; \phi (z) + z {\phi (z)
 +
} bar + \chi (z) + \overline{ {\chi (z) }}\; \} ,\  \overline{z}\; = x _ {1} - ix _ {2} ,
 +
$$
  
using two analytic functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621028.png" /> of the complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621029.png" />. This representation makes it possible to reduce the boundary value problem (*) for an arbitrary domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b016/b016210/b01621030.png" /> to a system of boundary value problems for analytic functions, for which a method of solving was developed in detail by G.V. Kolosov and N.I. Muskhelishvili. This method was developed while solving various planar problems of elasticity theory (cf. [[Elasticity theory, planar problem of|Elasticity theory, planar problem of]]), in which the main biharmonic function is the stress function or the Airy function [[#References|[2]]], [[#References|[3]]] (cf. [[Airy functions|Airy functions]]).
+
using two analytic functions $  \phi (z), \chi (z) $
 +
of the complex variable $  z = x _ {1} + ix _ {2} $.  
 +
This representation makes it possible to reduce the boundary value problem (*) for an arbitrary domain $  D $
 +
to a system of boundary value problems for analytic functions, for which a method of solving was developed in detail by G.V. Kolosov and N.I. Muskhelishvili. This method was developed while solving various planar problems of elasticity theory (cf. [[Elasticity theory, planar problem of|Elasticity theory, planar problem of]]), in which the main biharmonic function is the stress function or the Airy function [[#References|[2]]], [[#References|[3]]] (cf. [[Airy functions|Airy functions]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. [A.N. Tikhonov] Tichonoff,  A.A. Samarskii,  "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Muskhelishvili,  "Some basic problems of the mathematical theory of elasticity" , Noordhoff  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Lavrent'ev,  B.V. Shabat,  "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft.  (1967)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. [A.N. Tikhonov] Tichonoff,  A.A. Samarskii,  "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft.  (1959)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Muskhelishvili,  "Some basic problems of the mathematical theory of elasticity" , Noordhoff  (1975)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Lavrent'ev,  B.V. Shabat,  "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft.  (1967)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 10:59, 29 May 2020


A function $ u(x) = u(x _ {1} \dots x _ {n} ) $ of real variables, defined in a domain $ D $ of the Euclidean space $ \mathbf R ^ {n} $, $ n \geq 2 $, with continuous partial derivatives up to the fourth order inclusive, that satisfies in $ D $ the equation

$$ \Delta ^ {2} u \equiv \ \Delta ( \Delta u) = 0, $$

where $ \Delta $ is the Laplace operator. This equation is known as the biharmonic equation. The class of biharmonic functions includes the class of harmonic functions and is a subclass of the class of poly-harmonic functions (cf. Harmonic function; Poly-harmonic function). Each biharmonic function is an analytic function of the coordinates $ x _ {i} $.

From the point of view of practical applications the biharmonic functions in two variables $ u(x _ {1} , x _ {2} ) $ are the most important. Such biharmonic functions can be represented using harmonic functions $ u _ {1} , u _ {2} $ or $ v _ {1} , v _ {2} $, in the form

$$ u(x _ {1} , x _ {2} ) = \ x _ {1} u _ {1} (x _ {1} , x _ {2} ) + u _ {2} (x _ {1} , x _ {2} ) $$

or

$$ u(x _ {1} , x _ {2} ) = \ (r ^ {2} -r _ {0} ^ {2} ) v _ {1} (x _ {1} , x _ {2} ) + v _ {2} (x _ {1} , x _ {2} ), $$

where $ r ^ {2} = x _ {1} ^ {2} + x _ {2} ^ {2} $, while $ r _ {0} ^ {2} $ is a constant. The main boundary value problem for biharmonic functions is the following: To find a biharmonic function in the domain $ D $ that is continuous together with its first-order derivatives in the closed domain $ \overline{D}\; = D \cup C $ and satisfies on the boundary $ C $ the conditions

$$ \tag{* } \left . u \right | _ {C} = \ f _ {1} (s),\ \ \left . \frac{\partial u }{\partial n } \right | _ {C} = \ f _ {2} (s), $$

where $ \partial u / \partial n $ is the derivative with respect to the normal on $ C $, and $ f _ {1} (s), f _ {2} (s) $ are given continuous functions of the arc length $ s $ on the contour $ C $. The above representations of biharmonic functions give the solution of problem (*) in an explicit form for the case of the disc $ D $, starting from the Poisson integral for harmonic functions [1].

Biharmonic functions in two variables may also be represented as follows:

$$ u (x _ {1} , x _ {2} ) = \ \mathop{\rm Re} \{ \overline{z}\; \phi (z) + \chi (z) \} = $$

$$ = \ { \frac{1}{2} } \{ \overline{z}\; \phi (z) + z {\phi (z) } bar + \chi (z) + \overline{ {\chi (z) }}\; \} ,\ \overline{z}\; = x _ {1} - ix _ {2} , $$

using two analytic functions $ \phi (z), \chi (z) $ of the complex variable $ z = x _ {1} + ix _ {2} $. This representation makes it possible to reduce the boundary value problem (*) for an arbitrary domain $ D $ to a system of boundary value problems for analytic functions, for which a method of solving was developed in detail by G.V. Kolosov and N.I. Muskhelishvili. This method was developed while solving various planar problems of elasticity theory (cf. Elasticity theory, planar problem of), in which the main biharmonic function is the stress function or the Airy function [2], [3] (cf. Airy functions).

References

[1] A.N. [A.N. Tikhonov] Tichonoff, A.A. Samarskii, "Differentialgleichungen der mathematischen Physik" , Deutsch. Verlag Wissenschaft. (1959) (Translated from Russian)
[2] N.I. Muskhelishvili, "Some basic problems of the mathematical theory of elasticity" , Noordhoff (1975) (Translated from Russian)
[3] M.A. Lavrent'ev, B.V. Shabat, "Methoden der komplexen Funktionentheorie" , Deutsch. Verlag Wissenschaft. (1967) (Translated from Russian)

Comments

An axiomatic treatment of biharmonic functions, similar to that of harmonic functions, is given in [a1], [a2].

References

[a1] E.P. Smyrnelis, "Axiomatique des fonctions biharmoniques" Ann. Inst. Fourier (Grenoble) , 25 : 1 (1975) pp. 35–97
[a2] E.P. Smyrnelis, "Axiomatique des fonctions biharmoniques" Ann. Inst. Fourier (Grenoble) , 26 : 3 (1976) pp. 1–47
How to Cite This Entry:
Biharmonic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Biharmonic_function&oldid=13691
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article