Namespaces
Variants
Actions

Aleksandrov compactification

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 54D35 [MSN][ZBL]

Aleksandrov compact extension

The unique Hausdorff compactification $\alpha X$ of a locally compact, non-compact, Hausdorff space $X$, obtained by adding a single point $\infty$ to $X$. An arbitrary neighbourhood of the point $\infty$ must then have the form $\{\infty\} \cup (X \setminus F)$, where $F$ is a compact set in $X$. The Aleksandrov compactification $\alpha X$ is the smallest element in the set $B(X)$ of all compactifications of $X$. A smallest element in the set $B(X)$ exists only for a locally compact space $B(X)$ and must coincide with $\alpha X$.

The Aleksandrov compactification was defined by P.S. Aleksandrov [1] and plays an important role in topology. Thus, the Aleksandrov compactification $\alpha\mathbf{R}^n$ of the $n$-dimensional Euclidean space is identical with the $n$-dimensional sphere; the Aleksandrov compactification $\alpha\mathbf{N}$ of the set of natural numbers is homeomorphic to the space of a convergent sequence together with the limit point; the Aleksandrov compactification of the "open" Möbius strip coincides with the real projective plane $\mathbf{R}P^2$. There are pathological situations connected with the Aleksandrov compactification, e.g. there exists a perfectly-normal, locally compact and countably-compact space $X$ whose Aleksandrov compactification has the dimensions $\dim\alpha X < \dim X$ and $\mathrm{Ind}\,\alpha X < \mathrm{Ind}\,X$.

References

[1] P.S. [P.S. Aleksandrov] Aleksandroff, "Ueber die Metrisation der im Kleinen kompakten topologischen Räumen" Math. Ann. , 92 (1924) pp. 294–301 (in German) Zbl 50.0128.04


Comments

The Aleksandrov compactification is also called the one-point compactification.

References

[a1] J. Dugundji, "Topology" , Allyn & Bacon (1966) (Theorem 8.4) Zbl 0144.21501
How to Cite This Entry:
Aleksandrov compactification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Aleksandrov_compactification&oldid=42716
This article was adapted from an original article by V.V. Fedorchuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article