Namespaces
Variants
Actions

Difference between revisions of "Adjoint module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
a0108601.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/A010/A.0100860 Adjoint module,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''contragradient module, dual module''
 
''contragradient module, dual module''
  
The module of homomorphisms of a given module into the ground ring. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108601.png" /> be a left module over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108602.png" />. The Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108603.png" /> of homomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108604.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108605.png" /> regarded as a left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108606.png" />-module can be made into a right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108607.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108608.png" /> by putting
+
The module of homomorphisms of a given module into the ground ring. More precisely, let $  M $
 +
be a left module over a ring $  R $.  
 +
The Abelian group $  \mathop{\rm Hom} _ {R} ( M , R ) $
 +
of homomorphisms of $  M $
 +
into $  R $
 +
regarded as a left $  R $-
 +
module can be made into a right $  R $-
 +
module $  M  ^ {*} $
 +
by putting
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a0108609.png" /></td> </tr></table>
+
$$
 +
x ( \phi \lambda )  = \
 +
( x \phi ) \lambda ,\ \
 +
x \in M ,\ \
 +
\phi \in  \mathop{\rm Hom} _ {R} ( M , R ) ,\ \
 +
\lambda \in R .
 +
$$
  
This right module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086010.png" /> is called the adjoint of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086011.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086012.png" />, one can define an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086013.png" /> by putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086014.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086015.png" />. This defines a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086016.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086017.png" />. For any left <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086018.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086019.png" />, the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086020.png" /> given by
+
This right module $  M  ^ {*} $
 +
is called the adjoint of $  M $.  
 +
For $  x \in M $,  
 +
one can define an element $  \overline{x}\; \in M  ^ {**} $
 +
by putting $  \overline{x}\; ( \phi ) = x( \phi ) $
 +
for all $  \phi \in M  ^ {*} $.  
 +
This defines a homomorphism of $  M $
 +
into $  M ^ {** } $.  
 +
For any left $  R $-
 +
module $  C $,  
 +
the mapping $  \zeta : M  ^ {*} \otimes _ {R} C \rightarrow  \mathop{\rm Hom} _ {R} ( M , C ) $
 +
given by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086021.png" /></td> </tr></table>
+
$$
 +
x ( ( \phi \otimes c ) \zeta )  = \
 +
( x \phi ) c ,\ \
 +
x \in M ,\ \
 +
\phi \in M  ^ {*} ,\ \
 +
c \in C ,
 +
$$
  
is also a homomorphism. Both of these are isomorphisms when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086022.png" /> is a finitely-generated projective module [[#References|[2]]]. It follows from the properties of the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086023.png" /> that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086024.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086025.png" /> is the direct sum, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086026.png" /> the direct product) and that there is a homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086027.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086028.png" />. The composite mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086029.png" /> is the identity, but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086030.png" /> need not be isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086031.png" />. The torsion-free modules in the sense of Bass are those for which the above homomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086032.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086033.png" /> turns out to be a monomorphism. This property is equivalent to the imbeddability of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086034.png" /> in a direct product of copies of the ground ring. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086035.png" /> is right and left Noetherian, then the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086036.png" /> defines a duality between the categories of finitely-generated left and right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086037.png" />-modules if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a010/a010860/a01086038.png" /> is a [[Quasi-Frobenius ring|Quasi-Frobenius ring]].
+
is also a homomorphism. Both of these are isomorphisms when $  M $
 +
is a finitely-generated projective module [[#References|[2]]]. It follows from the properties of the functor $  \mathop{\rm Hom} $
 +
that $  ( \sum M _  \alpha  )  ^ {*} \simeq \prod M _  \alpha  $(
 +
where $  \sum $
 +
is the direct sum, and $  \prod $
 +
the direct product) and that there is a homomorphism of $  M  ^ {***} $
 +
into $  M  ^ {*} $.  
 +
The composite mapping $  M  ^ {*} \rightarrow M  ^ {***} \rightarrow M  ^ {*} $
 +
is the identity, but $  M  ^ {***} $
 +
need not be isomorphic to $  M  ^ {*} $.  
 +
The torsion-free modules in the sense of Bass are those for which the above homomorphism of $  M $
 +
into $  M  ^ {**} $
 +
turns out to be a monomorphism. This property is equivalent to the imbeddability of $  M $
 +
in a direct product of copies of the ground ring. If $  R $
 +
is right and left Noetherian, then the mapping $  M \mapsto M  ^ {*} $
 +
defines a duality between the categories of finitely-generated left and right $  R $-
 +
modules if and only if $  R $
 +
is a [[Quasi-Frobenius ring|Quasi-Frobenius ring]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley  (1975)  pp. Chapt.4;5;6  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.P. Mishina,  L.A. Skornyakov,  "Abelian groups and modules" , Amer. Math. Soc.  (1976)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Algebra: Modules. Rings. Forms" , '''2''' , Addison-Wesley  (1975)  pp. Chapt.4;5;6  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.P. Mishina,  L.A. Skornyakov,  "Abelian groups and modules" , Amer. Math. Soc.  (1976)  (Translated from Russian)</TD></TR></table>

Latest revision as of 16:09, 1 April 2020


contragradient module, dual module

The module of homomorphisms of a given module into the ground ring. More precisely, let $ M $ be a left module over a ring $ R $. The Abelian group $ \mathop{\rm Hom} _ {R} ( M , R ) $ of homomorphisms of $ M $ into $ R $ regarded as a left $ R $- module can be made into a right $ R $- module $ M ^ {*} $ by putting

$$ x ( \phi \lambda ) = \ ( x \phi ) \lambda ,\ \ x \in M ,\ \ \phi \in \mathop{\rm Hom} _ {R} ( M , R ) ,\ \ \lambda \in R . $$

This right module $ M ^ {*} $ is called the adjoint of $ M $. For $ x \in M $, one can define an element $ \overline{x}\; \in M ^ {**} $ by putting $ \overline{x}\; ( \phi ) = x( \phi ) $ for all $ \phi \in M ^ {*} $. This defines a homomorphism of $ M $ into $ M ^ {** } $. For any left $ R $- module $ C $, the mapping $ \zeta : M ^ {*} \otimes _ {R} C \rightarrow \mathop{\rm Hom} _ {R} ( M , C ) $ given by

$$ x ( ( \phi \otimes c ) \zeta ) = \ ( x \phi ) c ,\ \ x \in M ,\ \ \phi \in M ^ {*} ,\ \ c \in C , $$

is also a homomorphism. Both of these are isomorphisms when $ M $ is a finitely-generated projective module [2]. It follows from the properties of the functor $ \mathop{\rm Hom} $ that $ ( \sum M _ \alpha ) ^ {*} \simeq \prod M _ \alpha $( where $ \sum $ is the direct sum, and $ \prod $ the direct product) and that there is a homomorphism of $ M ^ {***} $ into $ M ^ {*} $. The composite mapping $ M ^ {*} \rightarrow M ^ {***} \rightarrow M ^ {*} $ is the identity, but $ M ^ {***} $ need not be isomorphic to $ M ^ {*} $. The torsion-free modules in the sense of Bass are those for which the above homomorphism of $ M $ into $ M ^ {**} $ turns out to be a monomorphism. This property is equivalent to the imbeddability of $ M $ in a direct product of copies of the ground ring. If $ R $ is right and left Noetherian, then the mapping $ M \mapsto M ^ {*} $ defines a duality between the categories of finitely-generated left and right $ R $- modules if and only if $ R $ is a Quasi-Frobenius ring.

References

[1] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms" , 2 , Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French)
[2] S. MacLane, "Homology" , Springer (1963)
[3] A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)
How to Cite This Entry:
Adjoint module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Adjoint_module&oldid=18075
This article was adapted from an original article by L.A. Skornyakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article