Absolute value
From Encyclopedia of Mathematics
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
modulus, of a real number $a$
The non-negative number, denoted by $a$, which is defined as follows: If $a\geq0$, $|a|=a$; if $a<0$, $|a|=-a$. The absolute value (modulus) of a complex number $z=x+iy$, where $x$ and $y$ are real numbers, is the number $|z| = +\sqrt{x^2+y^2}$.
Properties
Absolute values obey the following relations
- $|a| = |-a|$,
- $|a|-|b|\leq |a+b| \leq |a| + |b|$,
- $|a|-|b|\leq |a-b| \leq |a| + |b|$,
- $|a\cdot b|=|a|\cdot |b|$,
- if $b\ne0$ then $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$,
- $|a|^2 = |a^2| = a^2$ (only for real numbers).
Generalization
A generalization of the concept of the absolute value to the case of general fields exists, cf. Norm on a field and Valuation.
How to Cite This Entry:
Absolute value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absolute_value&oldid=35189
Absolute value. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Absolute_value&oldid=35189