Namespaces
Variants
Actions

Toda lattices

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

There are many Toda systems spawned by Toda's nearest neighbour linking of anharmonic oscillators on the line [a1]. A convenient container is the $2$-Toda system, first introduced and studied comprehensively in [a2]; see also [a3].

Let $M$ be a bi-infinite or semi-infinite matrix flowing as follows ($\Lambda = \Lambda _ { i , j } = \delta _ { i + 1 , j }$, the shift operator):

\begin{equation*} \frac { \partial M } { \partial x _ { n } } = \Lambda ^ { n } M , \end{equation*}

\begin{equation*} \frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n }, \end{equation*}

$n = 1,2 , \dots$, with Borel decomposition

\begin{equation*} M = S _ { 1 } ^ { - 1 } S _ { 2 }, \end{equation*}

where $S _ { 1 }$ and $S _ { 2 } ^ { t }$ are lower triagonal and $\operatorname {diag} ( S _ { 1 } ) = I$.

Define

\begin{equation*} ( L _ { 1 } , L _ { 2 } ) = ( S _ { 1 } \Lambda S _ { 1 } ^ { - 1 } , S _ { 2 } \Lambda ^ { t } S _ { 2 } ^ { - 1 } ); \end{equation*}

then

\begin{equation*} \frac { \partial L _ { i } } { \partial x _ { n } } = [ ( L _ { 1 } ^ { n } ) _ { + } , L _ { i } ], \end{equation*}

\begin{equation*} \frac { \partial L _ { i } } { \partial y _ { n } } = [ ( L _ { 2 } ^ { n } ) _ { - } , L _ { i } ], \end{equation*}

$i = 1,2$; $n = 1,2 , \dots$, with eigenvectors ($[ \alpha ] = ( \alpha , \alpha ^ { 2 } / 2 , \alpha ^ { 2 } / 3 , \ldots )$, $\chi ( z ) = ( z ^ { n } ) _ { n \in \mathbf{Z} }$):

\begin{equation*} \Psi _ { 1 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } x _ { i } z ^ { i } } S _ { 1 } \chi ( z ) = \end{equation*}

\begin{equation*} = \left( \frac { e ^ { \sum _ { 1 } ^ { \infty } x _ { i } ^ { i } z ^ { i } } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) z ^ { n } } { \tau _ { n } ( x , y ) } \right) _ { n \in \mathbf{Z} } , \Psi _ { 2 } ( z ) = e ^ { \sum _ { 1 } ^ { \infty } y _ { i } z ^ { - i } } S _ { 2 } \chi ( z ) = \end{equation*}

\begin{equation*} = \left( \frac { e ^ { \sum _ { 1 }^{\infty} y _ { i } z ^ { - i } } \tau _ { n + 1 } ( x , y - [ z ] ) z ^ { n } } { \tau _ { n } ( x , y ) } \right) _ { n \in \mathbf{Z} } , ( L _ { 1 } , L _ { 2 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ) = ( z , z ^ { - 1 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ), \end{equation*}

\begin{equation*} \frac { \partial \Psi _ { i } } { \partial x _ { n } } = ( L ^ { n _ { 1 } } ) _ { + } \Psi _ { i } , \frac { \partial \Psi _ { i } } { \partial y _ { n } } = ( L _ { 2 } ^ { n } ) _ { - } \Psi _ { i }, \end{equation*}

$i = 1,2$; $n = 1,2 , \dots$.

Let

\begin{equation*} W _ { 1 } = S _ { 1 } e ^ { \sum _ { 1 } ^ { \infty } x _ { k } \Lambda ^ { k } }, \end{equation*}

\begin{equation*} W _ { 2 } = S _ { 2 } e ^ { \sum _ { 1 } ^ { \infty } y _ { k } ( \Lambda ^ { t } ) ^ { k } }; \end{equation*}

the crucial identity

\begin{equation*} W _ { 1 } ( x , y ) W _ { 1 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 } = W _ { 2 } ( x , y ) W _ { 2 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 } \end{equation*}

is equivalent to the bilinear identities for the tau-functions

\begin{equation*} \oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) \times \end{equation*}

\begin{equation*} = \oint _ { z = \infty } \tau _ { n + 1 } ( x , y - [ z ] ) \tau _ { m } ( x ^ { \prime } , y ^ { \prime } + [ z ] ) \times \end{equation*}

\begin{equation*} \times e ^ { \sum ( y _ { i } - y _ { i } ^ { \prime } ) z ^ { - i } } z ^ { n - m - 1 } d z, \end{equation*}

which characterize the solution.

The $1$-Toda system (which can always be imbedded in the $2$-Toda system) is just the $x$-flow for $L_1$, i.e. it just involves ignoring $L_{2}$ and in effect freezing $y$ at one value. This is equivalent to the Grassmannian flag $W _ { n } \supset W _ { n + 1}$, $n \in \mathbf{Z}$, where

\begin{equation*} W _ { n } = \operatorname { span } _ { \text{C} } \left\{ \frac { \partial ^ { k } \Psi _ { 1 , n } ( x , z ) } { \partial x _ { 1 } } : k = 0,1 , \ldots \right\}, \end{equation*}

or, alternatively, it is characterized by the left-hand side of the bilinear identities $= 0$ for $n > m$ and $\mathsf{y} = \mathsf{y} ^ { \prime }$ frozen (or suppressed). The semi-infinite ($1$ or $2$) Toda system involves setting $\tau _ { - i } = 0$, $i = 1,2 , \dots$, and $\tau _ { 0 } = 1$, in which case $\tau _ { n } ( x - [ z ] , y )$ and $\tau _ { n } ( x , y + [ z ] )$ are polynomials in $z$ of degree at most $n$.

The famous triagonal Toda system — the original Toda system — is equivalent to the reduction $L _ { 1 } = L _ { 2 } = : L = L ( x - y )$ or, equivalently, $\Lambda M = M \Lambda ^ { t }$ or, equivalently, $\tau ( x , y ) = \tau ( x - y )$. In general, the $( 2 p + 1 )$-gonal Toda system $L _ { 1 } ^ { p } = L _ { 2 } ^ { p } = : L$ is equivalent to $\Lambda ^ { p } M = M ( \Lambda ^ { t } ) ^ { p }$ or, equivalently,

\begin{equation*} y _ { 1 } , \dots , \hat{y} _ { p } , \dots ; x _ { p } - y _ { p } , x _ { 2 p} - y _ { 2 p} , \dots ) \end{equation*}

The $l$-periodic $2$-Toda system is a $2$-Toda lattice such that $[ \Lambda ^ { l } , L _ { 1 } ] = [ \Lambda ^ { l } , L _ { 2 } ] = 0$. One can of course consider more than one reduction at a time. For example, the $l$-periodic triagonal Toda lattice [a4] linearizes on the Jacobian of a hyper-elliptic curve $C$ (the associated spectral curve) with the $\tau _ { n }$ being essentially theta-functions $\tau _ { n } ( t ) = \tau _ { 0 } ( t + n w )$ where $l w \equiv 0$ in $\operatorname { Jac } ( C )$, $t = x - y$, the flat coordinates on $\operatorname { Jac } ( C )$.

One can also consider in this context Toda flows going with different Lie algebras:

\begin{equation*} \dot { x } _ { i } = x _ { i } y _ { i }, \end{equation*}

\begin{equation*} \dot { y } = A x, \end{equation*}

where $x , y \in \mathbf{R} ^ { l + 1 }$, $\langle p , y \rangle = 0$, with $p A = 0$, $A$ being the Cartan matrix of Kac–Moody Lie algebras by extended Dynkin diagrams (cf. also Kac–Moody algebra). The non-periodic case involves $A$ being the Cartan matrix of a simple Lie algebra, in which case $p = 0$. The former case linearizes on Abelian varieties [a4] and the latter on "non-compact" Abelian varieties [a5].

References

[a1] M. Toda, "Vibration of a chain with a non-linear interaction" J. Phys. Soc. Japan , 22 (1967) pp. 431–436
[a2] K. Ueno, K. Takasaki, "Toda lattice hierarchy" Adv. Studies Pure Math. , 4 (1984) pp. 1–95
[a3] M. Adler, P. van Moerbeke, "Group factorization, moment matrices and Toda latices" Internat. Math. Research Notices , 12 (1997)
[a4] M. Adler, P. van Moerbeke, "Completely integrable systems, Euclidean Lie algebras and curves; Linearization of Hamiltonians systems, Jacoby varieties and representation theory" Adv. Math. , 38 (1980) pp. 267–379
[a5] B. Konstant, "The solution to a generalized Toda lattice and representation theory" Adv. Math. , 34 (1979) pp. 195–338
How to Cite This Entry:
Toda lattices. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Toda_lattices&oldid=56279
This article was adapted from an original article by M. Adler (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article