Namespaces
Variants
Actions

Matrix variate elliptically contoured distribution

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The class of matrix variate elliptically contoured distributions can be defined in many ways. Here the definition of A.K. Gupta and T. Varga [a4] is given.

A random matrix $X ( p \times n )$ (see Matrix variate distribution) is said to have a matrix variate elliptically contoured distribution if its characteristic function has the form $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ with $T$ a $( p \times n )$-matrix, $M$ a $( p \times n )$-matrix, $\Sigma$ a $( p \times p )$-matrix, $\Phi$ a $( n \times n )$-matrix, $\Sigma \geq 0$, $\Phi \geq 0$ and $\psi : [ 0 , \infty ) \rightarrow \mathbf{R}$. This distribution is denoted by $E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$. If the distribution of $X$ is absolutely continuous (cf. also Absolute continuity), then its probability density function (cf. also Density of a probability distribution) has the form

\begin{equation*} | \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } \left( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) \right), \end{equation*}

where $h$ and $\psi$ determine each other.

An important subclass of the class of matrix variate elliptically contoured distributions is the class of matrix variate normal distributions. A matrix variate elliptically contoured distribution has many properties which are similar to the normal distribution. For example, linear functions of a random matrix with a matrix variate elliptically contoured distribution also have elliptically contoured distributions. That is, if $X \sim E _ { p , n } ( M , \Sigma \otimes \Phi , \psi )$, then for given constant matrices $C ( q \times n )$, $A ( q \times p )$, $B ( n \times m )$, $A X B + C \sim E _ { q , n } ( A M B + C , ( A \Sigma A ^ { \prime } ) \otimes ( B ^ { \prime } \Phi B ) , \psi )$.

If $X$, $M$ and $\Sigma$ are partitioned as

\begin{equation*} X = \left( \begin{array} { l } { X _ { 1 } } \\ { X _ { 2 } } \end{array} \right) , M = \left( \begin{array} { c } { M _ { 1 } } \\ { M _ { 2 } } \end{array} \right) , \Sigma = \left( \begin{array} { l l } { \Sigma _ { 11 } } & { \Sigma _ { 12 } } \\ { \Sigma _ { 21 } } & { \Sigma _ { 22 } } \end{array} \right), \end{equation*}

where $X _ { 1 }$ is a $( q \times n )$-matrix, $M _ { 1 }$ is a $( q \times n )$-matrix and $\Sigma _ { 11 }$ is a $( q \times q )$-matrix, $q < p$, then $X _ { 1 } \sim E _ { q ,\, n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi )$. However, if $X$, $M$ and $\Phi$ are partitioned as

\begin{equation*} X = ( X _ { 1 } , X _ { 2 } ) , M = ( M _ { 1 } , M _ { 2 } ) , \Phi = \left( \begin{array} { c c } { \Phi _ { 11 } } & { \Phi _ { 12 } } \\ { \Phi _ { 21 } } & { \Phi _ { 22 } } \end{array} \right), \end{equation*}

where $X _ { 1 }$ is a $( p \times m )$-matrix, $M _ { 1 }$ is a $( p \times m )$-matrix, and $\Phi _ { 11 }$ is an $( m \times m )$-matrix, $m < n$, then $X _ { 1 } \sim E _ { p , m } ( M _ { 1 } , \Sigma \otimes \Phi _ { 11 } , \psi )$.

Here, if the expectations exist, then $\mathsf{E} ( X ) = M$ and $\operatorname { cov } ( X ) = c \Sigma \otimes \Phi$, where $c = - 2 \psi ^ { \prime } ( 0 )$. An important tool in the study of matrix variate elliptically contoured distributions is the stochastic representation of $X$:

\begin{equation*} X : = M + r A U B ^ { \prime }, \end{equation*}

where $\operatorname{rank} ( \Sigma ) = p _ { 1 }$, $\operatorname{rank} ( \Phi ) = n _ { 1 }$, $U$ is a $( p _ { 1 } \times n _ { 1 } )$-matrix and $\overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } )$ is uniformly distributed on the unit sphere in $\mathbf{R} ^ { p_1 n_1 } $, $r$ is a non-negative random variable, $r$ and $U$ are independent, $\Sigma = A A ^ { \prime }$, and $\Phi = B B ^ { \prime }$. Moreover,

\begin{equation*} \psi ( u ) = \int _ { 0 } ^ { \infty } \Omega _ { p _ { 1 } n _ { 1 } } ( r ^ { 2 } u ) d F ( r ) , u \geq 0, \end{equation*}

where $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$, $t \in {\bf R} ^ { p _ { 1 } n _ { 1 } }$ denotes the characteristic function of $\overset{\rightharpoonup} { f n n m e } ( U ^ { \prime } )$, and $F ( r )$ denotes the distribution function of $r$.

References

[a1] K.T. Fang, Y.T. Zhang, "Generalized multivariate analysis" , Springer (1990)
[a2] K.T. Fang, T.W. Anderson, "Statistical inference in elliptically contoured and related distributions" , Allerton Press (1990)
[a3] A.K. Gupta, T. Varga, "Rank of a quadratic form in an elliptically contoured matrix random variable" Statist. Probab. Lett. , 12 (1991) pp. 131–134
[a4] A.K. Gupta, T. Varga, "Elliptically contoured models in statistics" , Kluwer Acad. Publ. (1993)
[a5] A.K. Gupta, T. Varga, "Some applications of the stochastic representation of elliptically contoured distribution" Random Oper. and Stoch. Eqs. , 2 (1994) pp. 1–11
[a6] A.K. Gupta, T. Varga, "A new class of matrix variate elliptically contoured distributions" J. Italian Statist. Soc. , 3 (1994) pp. 255–270
[a7] A.K. Gupta, T. Varga, "Moments and other expected values for matrix variate elliptically contoured distributions" Statistica , 54 (1994) pp. 361–373
[a8] A.K. Gupta, T. Varga, "Normal mixture representation of matrix variate elliptically contoured distributions" Sankhyā Ser. A , 57 (1995) pp. 68–78
[a9] A.K. Gupta, T. Varga, "Some inference problems for matrix variate elliptically contoured distributions" Statistics , 26 (1995) pp. 219–229
[a10] A.K. Gupta, T. Varga, "Characterization of matrix variate elliptically contoured distributions" , Adv. Theory and Practice of Statistics: A Volume in Honor of Samuel Kotz , Wiley (1997) pp. 455–467
How to Cite This Entry:
Matrix variate elliptically contoured distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_variate_elliptically_contoured_distribution&oldid=55355
This article was adapted from an original article by A.K. Gupta (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article