Curvature transformation
From Encyclopedia of Mathematics
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
A mapping $ R ( X, Y) $
of the space $ {\mathcal T} ( M) $
of vector fields on a manifold $ M $,
depending linearly on $ X, Y \in {\mathcal T} ( M) $
and given by the formula
$$ R ( X, Y) Z = \ \nabla _ {X} \nabla _ {Y} Z - \nabla _ {Y} \nabla _ {X} Z - \nabla _ {[ X, Y] } Z; $$
here $ \nabla _ {X} $ is the covariant derivative in the direction of $ X $ and $ [ X, Y] $ is the Lie bracket of $ X $ and $ Y $. The mapping
$$ R \equiv \ R ( X, Y) Z: {\mathcal T} ^ {3} ( M) \rightarrow {\mathcal T} ( M) $$
is the curvature tensor of the linear connection defined by $ \nabla _ {X} $.
How to Cite This Entry:
Curvature transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Curvature_transformation&oldid=46566
Curvature transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Curvature_transformation&oldid=46566
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article