Bernstein-Rogosinski summation method
One of the methods for summing Fourier series; denoted by .
A trigonometric series
\tag{* } \frac{a _ {0} }{2} + \sum _ { k=1 } ^ \infty (a _ {k} \cos kx + b _ {k} \sin kx ) \equiv \ \sum _ { k=0 } ^ \infty A _ {k} (x)
is summable by the Bernstein–Rogosinski method at a point x _ {0} to the value S if the following condition is satisfied:
\lim\limits _ {n \rightarrow \infty } \ B _ {n} (x _ {0} ; \alpha _ {n} ) \equiv \ \lim\limits _ {n \rightarrow \infty } \ \frac{S _ {n} (x _ {0} + \alpha _ {n} )+S _ {n} (x _ {0} - \alpha _ {n} ) }{2\ } =
= \ \lim\limits _ {n \rightarrow \infty } \sum _ { k=0 } ^ { n } A _ {k} (x _ {0} ) \cos k \alpha _ {n} = S,
where \{ \alpha _ {n} \} , \alpha _ {n} > 0, \alpha _ {n} \rightarrow 0 , is a sequence of numbers, and where the S _ {n} (x) are the partial sums of the series (*).
W. Rogosinski [1] first (1924) considered the case \alpha _ {n} = p \pi /2n , where p is an odd number, and then (1925) the general case. S.N. Bernstein [S.N. Bernshtein] [2] considered (1930) the case \alpha _ {n} = \pi / (2n + 1) . The (BR, \alpha _ {n} ) - method sums the Fourier series of a function f \in L[0, 2 \pi ] in the cases \alpha _ {n} = p \pi /2n and \alpha _ {n} = \pi / (2n + 1) at the points of continuity of the function to its value and is one of the regular summation methods.
The Bernstein–Rogosinski sums B _ {n} (x, \alpha _ {n} ) are employed as an approximation procedure. In both cases described above they realize an approximation of the same order as the best approximation for functions of the classes { \mathop{\rm Lip} } \alpha and W ^ {1} { \mathop{\rm Lip} } \alpha .
References
[1] | W.W. Rogosinski, "Ueber die Abschnitte trigonometischer Reihen" Math. Ann. , 95 (1925) pp. 110–134 |
[2] | S.N. Bernshtein, , Collected works , 1 , Moscow (1952) pp. 37 |
[3] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
Comments
References
[a1] | W. Beekmann, K. Zeller, "Theorie der Limitierungsverfahren" , Springer (1970) |
Bernstein-Rogosinski summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bernstein-Rogosinski_summation_method&oldid=46023