Namespaces
Variants
Actions

Compact lattice element

From Encyclopedia of Mathematics
Revision as of 08:06, 26 November 2023 by Chapoton (talk | contribs) (→‎References: isbn link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

2020 Mathematics Subject Classification: Primary: 06B23 [MSN][ZBL]

An element of a complete lattice L for which the condition a \le \bigvee_{j \in J} x_j\,,\ \ x_j \in L\,, implies a \le x_{j_1} \vee \cdots \vee x_{j_k} for some finite subset \{j_1,\ldots,j_k\} \subset J.

An algebraic lattice is one in which each element is the union (least upper bound) of a set of compact elements.

A finite element b of a lattice L is one for which the condition b \le \bigvee_{d \in D} d for a directed set D \subset L implies b \le d for some d \in D.

In a complete lattice, the compact elements are precisely the finite elements.

References

[1] B. A. Davey, H. A. Priestley, Introduction to lattices and order, 2nd ed. Cambridge University Press (2002) ISBN 978-0-521-78451-1
How to Cite This Entry:
Compact lattice element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Compact_lattice_element&oldid=54707
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article