Namespaces
Variants
Actions

Prime ideal theorem

From Encyclopedia of Mathematics
Revision as of 11:59, 23 November 2023 by Chapoton (talk | contribs) (→‎References: isbn link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The assertion that every ideal in a Boolean algebra can be extended to a prime ideal. It is a consequence of the Axiom of choice, but is known to be strictly weaker. It implies the Tikhonov theorem for Hausdorff spaces.

References

  • T. Jech, "Set theory. The third millennium edition, revised and expanded" Springer Monographs in Mathematics (2003). ISBN 3-540-44085-2 Zbl 1007.03002
How to Cite This Entry:
Prime ideal theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Prime_ideal_theorem&oldid=54589