Watson lemma
A result linking the asymptotic behaviour of a function near $ 0 $
with the asymptotic behaviour of its Laplace transform near $ \infty $.
Let $ f( t) $
have the asymptotic expansion
$$ f( t) \sim \sum _ { n= } 1 ^ \infty a _ {n} t ^ {\lambda _ {n} } , \ t \rightarrow 0, $$
$ - 1 < \mathop{\rm Re} ( \lambda _ {1} ) < \mathop{\rm Re} ( \lambda _ {2} ) < \dots $, and let $ F $ be the Laplace transform of $ f $,
$$ F( p) = \int\limits _ { 0 } ^ \infty e ^ {- pt } f( t) dt . $$
Then $ F $ has a corresponding asymptotic expansion
$$ F( p) \sim \sum _ { n= } 1 ^ \infty \frac{a _ {n} \lambda _ {n} ! }{p ^ {\lambda _ {n} + 1 } } ,\ \ | p | \rightarrow \infty , $$
$ - \pi / 2 < \mathop{\rm arg} ( p) < \pi / 2 $.
References
[a1] | B. Davies, "Integral transforms and their applications" , Springer (1978) pp. §1.3 |
Watson lemma. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Watson_lemma&oldid=49173