Unimodular lattice
From Encyclopedia of Mathematics
A lattice $ L $
in $ \mathbf R ^ {n} $
such that $ \mathop{\rm vol} ( \mathbf R ^ {n} \mid L) = 1 $.
If $ a _ {1} \dots a _ {n} $
are $ n $
vectors in $ \mathbf R ^ {n} $,
then the lattice spanned by $ a _ {1} \dots a _ {n} $
is unimodular if and only if $ | \mathop{\rm det} ( a _ {1} \dots a _ {n} ) | = 1 $(
because $ \mathop{\rm vol} ( \mathbf R ^ {n} \mid L ( a _ {1} \dots a _ {n} )) = | \mathop{\rm det} ( a _ {1} \dots a _ {n} ) | $).
References
[a1] | J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) pp. 16 |
How to Cite This Entry:
Unimodular lattice. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unimodular_lattice&oldid=49078
Unimodular lattice. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unimodular_lattice&oldid=49078