Spectral semi-invariant
spectral cumulant
One of the characteristics of a stationary stochastic process. Let $ X ( t) $, $ - \infty < t < \infty $, be a real stationary stochastic process for which $ {\mathsf E} | X ( t) | ^ {n} \leq C < \infty $. The semi-invariants (cf. Semi-invariant) of this process,
$$ S ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ $$
$$ \left . = \frac{i ^ {-} n \partial ^ {n} }{\partial u _ {1} \dots \partial u _ {n} } \mathop{\rm log} {\mathsf E} e ^ {i ( u _ {1} X ( t _ {1} ) + \dots + u _ {n} X ( t _ {n} ) ) } \right | _ {u _ {1} = \dots = u _ {n} = 0 } , $$
are connected with the moments
$$ M ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ {\mathsf E} \{ X ( t _ {1} ) \dots X ( t _ {n} ) \} $$
by the relations
$$ S ^ {(} n) ( I) = \sum _ {\cup _ {p=} 1 ^ {q} I _ {p} = I } ( - 1 ) ^ {q-} 1 ( q - 1 ) ! \prod _ { p= } 1 ^ { q } M ^ {(} p) ( I _ {p} ) , $$
$$ M ^ {(} n) ( I) = \sum _ {\cup _ {p=} 1 ^ {q} I _ {p} = I } \prod _ { p= } 1 ^ { q } S ^ {(} p) ( I _ {p} ) , $$
where
$$ I = ( t _ {1} \dots t _ {n} ) ,\ \ I _ {p} = ( t _ {i _ {1} } \dots t _ {i _ {p} } ) \subseteq I , $$
and the summation is over all partitions of $ I $ into disjoint subsets $ I _ {p} $. It is said that $ X ( t) \in \Phi ^ {(} n) $ if, for all $ 1 \leq k \leq n $, there is a complex measure of bounded variation $ M ^ {(} k) $ on $ \mathbf R ^ {k} $ such that for all $ t _ {1} \dots t _ {n} $,
$$ M ^ {(} k) ( t _ {1} \dots t _ {k} ) = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t _ {1} \lambda _ {1} + \dots + t _ {k} \lambda _ {k} ) } M ^ {(} k) ( d \lambda _ {1} \dots d \lambda _ {k} ) = $$
$$ = \ \int\limits _ {\mathbf R ^ {k} } e ^ {i ( t , \lambda ) } M ^ {(} k) ( d \lambda ) . $$
A measure $ F ^ { ( n) } $, defined on a system of Borel sets, is called a spectral semi-invariant if, for all $ t _ {1} \dots t _ {n} $,
$$ S ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n} } e ^ {i ( t , \lambda ) } F ^ { ( n) } ( d \lambda ) . $$
The measure $ F ^ { ( n) } $ exists and has bounded variation if $ X ( t) \in \Phi ^ {(} n) $. In the case of a stationary process $ X ( t) $, the semi-invariants $ S ^ {(} n) ( t _ {1} \dots t _ {n} ) $ are invariant under translation:
$$ S ^ {(} n) ( t _ {1} + \tau \dots t _ {n} + \tau ) = S ^ {(} n) ( t _ {1} \dots t _ {n} ) , $$
and the spectral measures $ F ^ { ( n) } $ and $ M ^ {(} n) $ are concentrated on the manifold $ \lambda _ {1} + \dots + \lambda _ {n} = 0 $. If the measure $ F ^ { ( n) } $ is absolutely continuous with respect to Lebesgue measure on this manifold, then there is a spectral density $ f _ {n} ( \lambda _ {1} \dots \lambda _ {n-} 1 ) $ of order $ n $, defined by the equations
$$ S ^ {(} n) ( t _ {1} \dots t _ {n} ) = \ \int\limits _ {\mathbf R ^ {n-} 1 } e ^ { i ( \lambda _ {1} ( t _ {2} - t _ {1} ) + {} \dots + \lambda _ {n-} 1 ( t _ {n} - t _ {1} ) ) } \times $$
$$ \times f _ {n} ( \lambda _ {1} \dots \lambda _ {n-} 1 ) d \lambda , $$
for all $ t _ {1} \dots t _ {n} $. In the case of discrete time one must replace $ \mathbf R ^ {(} k) $ in all formulas above by the $ k $- dimensional cube $ - \pi \leq \lambda _ {i} \leq \pi $, $ 1 \leq i \leq k $.
References
[1] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
[2] | V.P. Leonov, "Some applications of higher semi-invariants to the theory of stationary stochastic processes" , Moscow (1964) (In Russian) |
Spectral semi-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectral_semi-invariant&oldid=48762