Namespaces
Variants
Actions

Semi-invariant

From Encyclopedia of Mathematics
Revision as of 08:13, 6 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search


A numerical characteristic of random variables related to the concept of a moment of higher order. If is a random vector, \phi _ \xi ( t) = {\mathsf E} e ^ {i ( t, \xi ) } is its characteristic function, t = ( t _ {1} \dots t _ {k} ) , t _ {i} \in \mathbf R ,

( t, \xi ) = \ \sum _ {i = 1 } ^ { k } t _ {i} \xi _ {i} ,

and if for some n \geq 1 the moments {\mathsf E} | \xi _ {i} | ^ {n} < \infty , i = 1 \dots k , then the (mixed) moments

m _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } = \ {\mathsf E} \xi _ {1} ^ {\nu _ {1} } {} \dots \xi _ {k} ^ {\nu _ {k} }

exist for all non-negative integers \nu _ {1} \dots \nu _ {k} such that \nu _ {1} + \dots + \nu _ {k} \leq n . Under these conditions,

\phi _ \xi ( t) = \ \sum _ {\nu _ {1} + \dots + \nu _ {k} \leq n } \frac{i ^ {\nu _ {1} + \dots + \nu _ {k} } }{\nu _ {1} ! \dots \nu _ {k} ! } m _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } \times

\times t _ {1} ^ {\nu _ {1} } \dots t _ {k} ^ {\nu _ {k} } + o (| t | ^ {n} ),

where | t | = | t _ {1} | + \dots + | t _ {k} | , and for sufficiently small | t | the principal value of \mathop{\rm ln} \phi _ \xi ( t) can be represented by Taylor's formula as

\mathop{\rm ln} \phi _ \xi ( t) = \ \sum _ {\nu _ {1} + \dots + \nu _ {k} \leq n } \frac{i ^ {\nu _ {1} + \dots + \nu _ {k} } }{\nu _ {1} ! \dots \nu _ {k} ! } s _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } \times

\times t _ {1} ^ {\nu _ {1} } \dots t _ {k} ^ {\nu _ {k} } + o (| t | ^ {n} ),

where the coefficients s _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } are called the (mixed) semi-invariants, or cumulants, of order \nu = ( \nu _ {1} \dots \nu _ {k} ) of the vector \xi = ( \xi _ {1} \dots \xi _ {k} ) . For independent random vectors \xi = ( \xi _ {1} \dots \xi _ {k} ) and \eta = ( \eta _ {1} \dots \eta _ {k} ) ,

s _ {\xi + \eta } ^ {( \nu _ {1} \dots \nu _ {k} ) } = \ s _ \xi ^ {( \nu _ {1} \dots \nu _ {k} ) } + s _ \eta ^ {( \nu _ {1} \dots \nu _ {k} ) } ,

that is, the semi-invariant of a sum of independent random vectors is the sum of their semi-invariants. This is the reason for the term "semi-invariant" , which reflects the additive property of independent variables (but, in general, the property does not hold for dependent variables).

The following formulas, connecting moments and semi-invariants, hold:

m _ \xi ^ {( \nu ) } = \ \sum ^ {*} { \frac{1}{q!} } \frac{\nu ! }{\lambda ^ {(} 1) ! \dots \lambda ^ {(} q) ! } \prod _ {p = 1 } ^ { q } s _ \xi ^ {( \lambda ^ {(} p) ) } ,

s _ \xi ^ {( \nu ) } = \sum ^ {*} \frac{(- 1) ^ {q - 1 } }{q } \frac{\nu ! }{\lambda ^ {(} 1) ! \dots \lambda ^ {(} q) ! } \prod _ {p = 1 } ^ { q } m _ \xi ^ {( \lambda ^ {(} p) ) } ,

where \sum ^ {*} denotes summation over all ordered sets of non-negative integer vectors \lambda ^ {(} p) , | \lambda ^ {(} p) | > 0 , with as sum the vector \nu . (Here v! is defined as v ! = v _ {1} ! \dots v _ {k} ! , and similarly for the \lambda ^ {(} p) ! .) In particular, if \xi is a random variable ( k = 1) , m _ {n} = m _ \xi ^ {(} n) = {\mathsf E} \xi ^ {n} , and s _ {n} = s _ \xi ^ {(} n) , then

m _ {1} = s _ {1} ,

m _ {2} = s _ {2} + s _ {1} ^ {2} ,

m _ {3} = s _ {3} + 3s _ {1} s _ {2} + s _ {1} ^ {3} ,

m _ {4} = s _ {4} + 3s _ {2} ^ {2} + 4s _ {1} s _ {3} + 6s _ {1} ^ {2} s _ {2} + s _ {1} ^ {4} ,

and

s _ {1} = m _ {1} (= {\mathsf E} \xi ),

s _ {2} = m _ {2} - m _ {1} ^ {2} (= {\mathsf D} \xi ),

s _ {3} = m _ {3} - 3m _ {1} m _ {2} + 2m _ {1} ^ {3} ,

s _ {4} = m _ {4} - 3m _ {2} ^ {2} - 4m _ {1} m _ {3} + 12m _ {1} ^ {2} m _ {2} - 6m _ {1} ^ {4} .

References

[1] V.P. Leonov, A.N. Shiryaev, "On a method of calculation of semi-invariants" Theory Probab. Appl. , 4 : 3 (1959) pp. 319–329 Teor. Veroyatnost. i Primen. , 4 : 3 (1959) pp. 342–355
[2] A.N. Shiryaev, "Probability" , Springer (1984) (Translated from Russian)

Comments

References

[a1] A. Stuart, J.K. Ord, "Kendall's advanced theory of statistics" , Griffin (1987)
[a2] L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) pp. Chapt. 1, §42 (Translated from German)
[a3] A. Rényi, "Probability theory" , North-Holland (1970) pp. Chapt. 3, §15
How to Cite This Entry:
Semi-invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Semi-invariant&oldid=48662
This article was adapted from an original article by A.N. Shiryaev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article