Reflection principle
A generalization of the symmetry principle for harmonic functions to harmonic functions in an arbitrary number of independent variables. Some formulations of the reflection principle are as follows:
1) Let $ G $ be a domain in a $ k $- dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $( in particular, a smooth or piecewise-smooth surface $ \Gamma $ without self-intersections) containing a $ ( k- 1) $- dimensional subdomain $ \sigma $ of a $ ( k- 1) $- dimensional hyperplane $ L $. If the function $ U( x _ {1} \dots x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1} \dots x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ L $, by means of the equality
$$ U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = - U( x _ {1} \dots x _ {k} ), $$
where the points $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $ and $ ( x _ {1} \dots x _ {k} ) \in G $ are symmetric relative to $ L $.
2) Let $ G $ be a domain of a $ k $- dimensional Euclidean space $ ( k \geq 1) $ that is bounded by a Jordan surface $ \Gamma $ containing a $ ( k- 1) $- dimensional subdomain $ \sigma $ of a $ ( k- 1) $- dimensional sphere $ \Sigma $ of radius $ R > 0 $ with centre at a point $ M ^ {0} = ( x _ {1} ^ {0} \dots x _ {k} ^ {0} ) $. If $ U( x _ {1} \dots x _ {k} ) $ is harmonic in $ G $, continuous on $ G \cup \sigma $ and equal to zero everywhere on $ \sigma $, then $ U( x _ {1} \dots x _ {k} ) $ can be extended as a harmonic function across $ \sigma $ into the domain $ G ^ {*} $ that is symmetric to $ G $ relative to $ \Sigma $( i.e. obtained from $ G $ by means of the transformation of inverse radii — inversions — relative to $ \Sigma $). This continuation is achieved by means of the Kelvin transformation, taken with the opposite sign, of $ U $ relative to $ \Sigma $, namely:
$$ U( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) = $$
$$ = \ - \frac{R ^ {k-} 2 }{r ^ {k-} 2 } U \left ( x _ {1} ^ {0} + R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } \dots x _ {k} ^ {0} + R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } \right ) , $$
where $ ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) \in G ^ {*} $, $ r = \sqrt {( x _ {1} ^ {*} - x _ {1} ^ {0} ) ^ {2} + \dots + ( x _ {k} ^ {*} - x _ {k} ^ {0} ) ^ {2} } $. Under the transformation of inverse radii relative to $ \Sigma $, the point $ M ^ {*} = ( x _ {1} ^ {*} \dots x _ {k} ^ {*} ) $ is mapped to the point $ M( x _ {1} \dots x _ {k} ) $, in correspondence with
$$ x _ {1} - x _ {1} ^ {0} = R ^ {2} \frac{x _ {1} ^ {*} - x _ {1} ^ {0} }{r ^ {2} } \dots x _ {k} - x _ {k} ^ {0} = \ R ^ {2} \frac{x _ {k} ^ {*} - x _ {k} ^ {0} }{r ^ {2} } , $$
such that if $ M ^ {*} \in G ^ {*} $, then $ M $ belongs to the domain $ G $( where $ U $ is given), and if $ M ^ {*} \in \sigma $, then $ M = M ^ {*} $.
References
[1] | R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German) |
Comments
In the non-Soviet literature, "reflection principle" refers also to the Riemann–Schwarz principle and its generalizations to $ \mathbf C ^ {n} $.
Cf. also Schwarz symmetry theorem.
Reflection principle. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection_principle&oldid=48471