Principal curvature
The normal curvature of a surface in a principal direction, i.e. in a direction in which it assumes an extremal value. The principal curvatures $ k _ {1} $
and $ k _ {2} $
are the roots of the quadratic equation
$$ \tag{* } \left | where $ E $, $ F $ and $ G $ are the coefficients of the [[First fundamental form|first fundamental form]], while $ L $, $ M $ and $ N $ are the coefficients of the [[Second fundamental form|second fundamental form]] of the surface, computed at the given point. The half-sum of the principal curvatures $ k _ {1} $ and $ k _ {2} $ of the surface gives the [[Mean curvature|mean curvature]], while their product is equal to the [[Gaussian curvature|Gaussian curvature]] of the surface. Equation (*) may be written as $$ k ^ {2} - 2Hk + K = 0, $$ where $ H $ is the mean, and $ K $ is the Gaussian curvature of the surface at the given point. The principal curvatures $ k _ {1} $ and $ k _ {2} $ are connected with the normal curvature $ \widetilde{k} $, taken in an arbitrary direction, by means of Euler's formula: $$ \widetilde{k} = k _ {1} \cos ^ {2} \phi + k _ {2} \sin ^ {2} \phi , $$
where $ \phi $ is the angle formed by the selected direction with the principal direction for $ k _ {1} $.
Comments
In the case of an $ m $- dimensional submanifold $ M $ of Euclidean $ n $- space $ E ^ {n} $ principal curvatures and principal directions are defined as follows.
Let $ \xi $ be a unit normal to $ M $ at $ p \in M $. The Weingarten mapping (shape operator) $ A _ \xi $ of $ M $ at $ p $ in direction $ \xi $ is given by the tangential part of $ - \overline \nabla \; _ {\overline \xi \; } $, where $ \overline \nabla \; $ is the covariant differential in $ E ^ {n} $ and $ \overline \xi \; $ is a local extension of $ \xi $ to a unit normal vector field. $ A _ \xi $ does not depend on the chosen extension of $ \xi $. The principal curvatures of $ M $ at $ p $ in direction $ \xi $ are given by the eigen values of $ A _ \xi $, the principal directions by its eigen directions. The (normalized) elementary symmetric functions of the eigen values of $ A _ \xi $ define the higher mean curvatures of $ M $, which include as extremal cases the mean curvature as the trace of $ A _ \xi $ and the Lipschitz–Killing curvature as its determinant.
References
[a1] | N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965) |
[a2] | B.-Y. Chen, "Geometry of submanifolds" , M. Dekker (1973) |
[a3] | M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French) |
[a4] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963) |
[a5] | M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976) pp. 145 |
[a6] | H.W. Guggenheimer, "Differential geometry" , McGraw-Hill (1963) pp. 25; 60 |
[a7] | D. Hilbert, S.E. Cohn-Vossen, "Geometry and the imagination" , Chelsea (1952) (Translated from German) |
[a8] | B. O'Neill, "Elementary differential geometry" , Acad. Press (1966) |
[a9] | M. Spivak, "A comprehensive introduction to differential geometry" , 1979 , Publish or Perish pp. 1–5 |
Principal curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Principal_curvature&oldid=48288