Poisson summation formula
The formula
The Poisson summation formula holds if, for example, the function g is absolutely integrable on the interval ( - \infty , + \infty ) , has bounded variation and 2 g ( x) = g ( x + 0 ) + g ( x - 0 ) . The Poisson summation formula can also be written in the form
\sqrt {a } \sum _ {k = - \infty } ^ { {+ } \infty } g ( a k ) = \ \sqrt {b } \sum _ {k = - \infty } ^ { {+ } \infty } \chi ( b k ) ,
where a and b are any two positive numbers satisfying the condition a b = 2 \pi , and \chi is the Fourier transform of the function g :
\chi ( u) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ {- \infty } ^ { {+ } \infty } g ( x) e ^ {- i u x } d x .
References
[1] | A. Zygmund, "Trigonometric series" , 1–2 , Cambridge Univ. Press (1988) |
[2] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
Poisson summation formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_summation_formula&oldid=48222