Peirce decomposition
The representation of a ring as the direct sum of subrings related to a given idempotent $ e $.
For a ring $ R $
containing an idempotent $ e $,
there exist left, right and two-sided Peirce decompositions, which are defined by
$$ R = \mathop{\rm Re} + R( 1- e), $$
$$ R = eR + ( 1- e) R, $$
$$ R = eRe + eR( 1- e)+( 1- e) Re+( 1- e) R( 1- e), $$
respectively. If $ R $ has no identity, then one puts, by definition,
$$ R( 1- e) = \{ {x- xe } : {x \in R } \} , $$
$$ ( 1- e) Re = \{ xe- exe: x \in R \} , $$
$$ ( 1- e) R( 1- e) = \{ x- ex- xe+ exe: x \in R \} . $$
The sets $ ( 1- e) R $ and $ eR( 1- e) $ are defined analogously. Therefore, in a two-sided Peirce decomposition an element $ x \in R $ can be represented as
$$ x = exe+( ex- exe)+( xe- exe)+( x- ex- xe+ exe), $$
in a left decomposition as
$$ x = xe+( x- xe) , $$
and in a right decomposition as
$$ x = ex +( x- ex). $$
There is also a Peirce decomposition with respect to an orthogonal system of idempotents $ \{ e _ {1} \dots e _ {n} \} $ where $ \sum _ {i} e _ {i} = 1 $:
$$ R = \sum _ {i,j } e _ {i} \mathop{\rm Re} _ {j} . $$
This decomposition was proposed by B. Peirce [1].
References
[1] | B. Peirce, "Linear associative algebra" Amer. J. Math. , 4 (1881) pp. 97–229 |
Comments
In modern ring theory the Peirce decomposition appears in the ring of a Morita context $ ( R, S, V, W) $, where $ R $ and $ S $ are Morita related if they are subrings of a ring $ T $ with an idempotent $ e $ such that $ R= eTe $, $ S=( 1- e) T( 1- e) $, i.e., they are parts of a Peirce decomposition of $ T $( see [a3], p.12).
A context or a set of pre-equivalence data is a sextuple $ ( R, R ^ \prime , M , M ^ \prime , \tau , \tau ^ \prime ) $ where $ R $ and $ R ^ \prime $ are rings, $ M $ is a left $ R $-, right $ R ^ \prime $- bimodule, $ M ^ \prime $ is a right $ R $-, left $ R ^ \prime $- bimodule and $ \tau : M \otimes _ {R ^ \prime } M ^ \prime \rightarrow R $, $ \tau ^ \prime : M ^ \prime \otimes _ {R} M \rightarrow R ^ \prime $ are bimodule homomorphisms, such that the following two associativity diagrams commute:
$$ and $$
Using $ \tau , \tau ^ \prime $, the set of all $ ( 2 \times 2) $- matrices
$$ \left ( $$ = \ \left \{ \left (
acquires a multiplication (using the usual matrix formulas) and this multiplication is associative precisely if the two diagrams above commute. Such a ring is then called the ring of a Morita context.
If $ ( R, R ^ \prime , M, M ^ \prime , \tau , \tau ^ \prime ) $ is a Morita context with $ \tau $ and $ \tau ^ \prime $ epic, then the functors $ N \mapsto M ^ \prime \otimes _ {R} N $, $ N ^ \prime \mapsto M \otimes _ {R ^ \prime } N ^ \prime $ define an equivalence of categories between the categories of left $ R $- modules and right $ R ^ \prime $- modules; cf. also Morita equivalence. Cf. [a1], §4.1 for more details.
References
[a1] | L.H. Rowen, "Ring theory" , I , Acad. Press (1988) pp. 36 |
[a2] | N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956) pp. 48, 50 |
[a3] | J.C. McConnell, J.C. Robson, "Noncommutative Noetherian rings" , Wiley (1987) |
Peirce decomposition. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Peirce_decomposition&oldid=48150