Mehler-Fock transform
Mehler–Fok transform
where P _ \nu ( x) is the Legendre function of the first kind (cf. Legendre functions). If f \in L[ 0, \infty ) , the function | f ^ { \prime } ( \tau ) | is locally integrable on [ 0, \infty ) and f( 0) = 0 , then the following inversion formula is valid:
\tag{2 } f( \tau ) = \tau \mathop{\rm tanh} \pi \tau \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ( x) F( x) dx.
The Parseval identity. Consider the Mehler–Fock transform and its inverse defined by the equalities
G( \tau ) = \int\limits _ { 1 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \pi \tau } P _ {i \tau - 1/2 } ( x) g( x) dx,
g( x) = \int\limits _ { 0 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \ \pi \tau } P _ {i \tau - 1/2 } ( x) G( \tau ) d \tau .
If g _ {i} ( x) , i = 1, 2 , are arbitrary real-valued functions satisfying the conditions
g _ {i} ( x) x ^ {-} 1/2 \mathop{\rm ln} ( 1+ x) \in L( 1, \infty ),\ \ g _ {i} ( x) \in L _ {2} ( 1, \infty ),
then
\int\limits _ { 0 } ^ \infty G _ {1} ( \tau ) G _ {2} ( \tau ) d \tau = \ \int\limits _ { 1 } ^ \infty g _ {1} ( x) g _ {2} ( x) dx.
The generalized Mehler–Fock transform and the corresponding inversion formula are:
\tag{3 } F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ^ {(} k) ( x) f( \tau ) d \tau ,
and
\tag{4 } f( \tau ) = \frac{1} \pi \tau \sinh \pi \tau \Gamma \left ( \frac{1}{2} - k + i \tau \right ) \Gamma \left ( \frac{1}{2} - k - i \tau \right ) \times
\times \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ^ {(} k) ( x) F( x) dx,
where P _ \nu ^ {(} k) ( x) are the associated Legendre functions of the first kind. For k= 0 formulas (3) and (4) reduce to (1) and (2); for k = 1/2 , y = \cosh \alpha , formulas (3) and (4) lead to the Fourier cosine transform, and for k = - 1/2 , y = \cosh \alpha to the Fourier sine transform. The transforms (1) and (2) were introduced by F.G. Mehler [1]. The basic theorems were proved by V.A. Fock [V.A. Fok].
References
[1] | F.G. Mehler, "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" Math. Ann. , 18 (1881) pp. 161–194 |
[2] | V.A. Fok, "On the representation of an arbitrary function by an integral involving Legendre functions with complex index" Dokl. Akad. Nauk SSSR , 39 (1943) pp. 253–256 (In Russian) |
[3] | V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Comments
References
[a1] | I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) |
Mehler-Fock transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mehler-Fock_transform&oldid=47817