Namespaces
Variants
Actions

Local uniformizing parameter

From Encyclopedia of Mathematics
Revision as of 22:17, 5 June 2020 by Ulf Rehmann (talk | contribs) (tex encoded by computer)
Jump to: navigation, search


local uniformizer, local parameter

A complex variable defined as a continuous function t _ {p _ {0} } = \phi _ {p _ {0} } ( p) of a point p on a Riemann surface R , defined everywhere in some neighbourhood V ( p _ {0} ) of a point p _ {0} \in R and realizing a homeomorphic mapping of V ( p _ {0} ) onto the disc D ( p _ {0} ) = \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) } \} , where \phi _ {p _ {0} } ( p _ {0} ) = 0 . Here V ( p _ {0} ) is said to be a distinguished or parametric neighbourhood, \phi _ {p _ {0} } : V ( p _ {0} ) \rightarrow D ( p _ {0} ) a distinguished or parametric mapping, and D ( p _ {0} ) a distinguished or parametric disc. Under a parametric mapping any point function g ( p) , defined in a parametric neighbourhood V ( p _ {0} ) , goes into a function of the local uniformizing parameter t , that is, g ( p) = g [ \phi _ {p _ {0} } ^ {-} 1 ( t) ] = G ( t) . If V ( p _ {0} ) and V ( p _ {1} ) are two parametric neighbourhoods such that V ( p _ {0} ) \cap V ( p _ {1} ) \neq \emptyset , and t _ {p _ {0} } and t _ {p _ {1} } are the two corresponding local uniformizing parameters, then t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {-} 1 ( t _ {p _ {0} } )] is a univalent holomorphic function on some subdomain of D ( p _ {0} ) realizing a biholomorphic mapping of this subdomain into D ( p _ {1} ) .

If R = R _ {F} is the Riemann surface of an analytic function w = F ( z) and p _ {0} is a regular element of F ( z) with projection z _ {0} \neq \infty , then t _ {p _ {0} } = z - z _ {0} ; t _ {p _ {0} } = 1 / z for z _ {0} = \infty . If p _ {0} is a singular, or algebraic, element of F ( z) , corresponding to the branch point z _ {0} of order k - 1 > 0 , then t _ {p _ {0} } = ( z - z _ {0} ) ^ {1/k} for z _ {0} \neq \infty and t _ {p _ {0} } = 1 / z ^ {1/k} for z _ {0} = \infty . In a parametric neighbourhood of an element p _ {0} the local uniformizing parameter t actually realizes a local uniformization, generally speaking, of the many-valued relation w = F ( z) , according to the formulas (for example, for z _ {0} \neq \infty ):

z = z _ {0} + t ^ {k} ,\ \ w = F ( z _ {0} + t ^ {k} ) = w ( t) ,\ \ k \geq 1 .

In the case when R is a Riemann surface with boundary, for points p _ {0} belonging to the boundary of R the local uniformizing parameter t _ {p _ {0} } = \phi _ {p _ {0} } ( p) maps the parametric neighbourhood V ( p _ {0} ) onto the half-disc

D ( p _ {0} ) = \ \{ {t \in \mathbf C } : {| t | < r ( p _ {0} ) , \mathop{\rm Im} t \geq 0 } \} .

If R is a a Riemannian domain over a complex space \mathbf C ^ {n} , n > 1 , then the local uniformizing parameter

t _ {p _ {0} } = \ \phi _ {p _ {0} } ( p) = \ ( t _ {1} \dots t _ {n} ) _ {p _ {0} } = \ ( \phi _ {1} ( p) \dots \phi _ {n} ( p) ) _ {p _ {0} }

realizes a homeomorphic mapping of the parametric neighbourhood V ( p _ {0} ) onto the polydisc

D ( p _ {0} ) =

= \ \{ t = ( t _ {1} \dots t _ {n} ) \in \mathbf C ^ {n} : | t _ {1} | < r _ {1} ( p _ {0} ) \dots | t _ {n} | < r _ {n} ( p _ {0} ) \} .

If V ( p _ {0} ) \cap V ( p _ {1} ) is not empty, then the mapping t _ {p _ {1} } = \phi _ {p _ {1} } [ \phi _ {p _ {0} } ^ {-} 1 ( t _ {p _ {0} } ) ] biholomorphically maps a certain subdomain of D ( p _ {0} ) into D ( p _ {1} ) .

References

[1] A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian)
[2] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10
[3] B.V. Shabat, "Introduction of complex analysis" , 1–2 , Moscow (1976) (In Russian)

Comments

References

[a1] H.M. Farkas, I. Kra, "Riemann surfaces" , Springer (1980)
How to Cite This Entry:
Local uniformizing parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Local_uniformizing_parameter&oldid=47685
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article