Dickman-function(2)
The unique continuous solution of the system
u \rho ^ \prime ( u ) = - \rho ( u - 1 ) ( u > 1 ) .
The Dickman function \rho ( u ) occurs in the problem of estimating the number \Psi ( x,y ) of positive integers not exceeding x that are free of prime factors greater than y : for any fixed u > 0 , one has \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x as u \rightarrow \infty [a2], [a4].
The function \rho ( u ) is positive, non-increasing and tends to zero at a rate faster than exponential as u \rightarrow \infty . A precise asymptotic estimate is given by the de Bruijn–Alladi formula [a1], [a3]:
\rho ( u ) = ( 1 + O ( { \frac{1}{u} } ) ) \sqrt { { \frac{\xi ^ \prime ( u ) }{2 \pi } } } \times
\times { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { \frac{e ^ {s} - 1 }{s} } } {ds } \right \} ( u > 1 ) ,
where \gamma is the Euler constant and \xi ( u ) is the unique positive solution of the equation e ^ {\xi ( u ) } = 1 + u \xi ( u ) .
References
[a1] | K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" J. Reine Angew. Math. , 335 (1982) pp. 180–196 |
[a2] | N.G. de Bruijn, "On the number of positive integers ![]() ![]() |
[a3] | N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" J. Indian Math. Soc. (N.S.) , 15 (1951) pp. 25–32 |
[a4] | A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" J. de Théorie des Nombres de Bordeaux , 5 (1993) pp. 411–484 |
Dickman-function(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickman-function(2)&oldid=46649