Namespaces
Variants
Actions

Morphic word

From Encyclopedia of Mathematics
Revision as of 20:15, 30 December 2015 by Richard Pinch (talk | contribs) (Start article: Morphic word)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A infinite word over an alphabet $A$ which is invariant under a non-erasing endomorphism $\phi$ of the free monoid $A^*$: that is, a map $\phi : A \rightarrow A^*$ which does not map any letter of $A$ to the empty word.

Examples: the Thue–Morse sequence on $A = \{a,b\}$ is invariant under $a \mapsto ab$, $b \mapsto ba$; the Fibonacci word on $A = \{a,b\}$ is invariant under $a \mapsto ab$, $b \mapsto a$.

See also: D0L-sequence.

References

  • Allouche, Jean-Paul; Shallit, Jeffrey Automatic Sequences: Theory, Applications, Generalizations Cambridge University Press (2003) ISBN 978-0-521-82332-6 Zbl 1086.11015
  • Lothaire, M. Combinatorics on Words (2nd ed.) Encyclopedia of Mathematics and Its Applications 17' Cambridge University Press (1997) ISBN 0-521-59924-5 Zbl 0874.20040
  • Lothaire, M. Algebraic Combinatorics on Words Encyclopedia of Mathematics and Its Applications 90 Cambridge University Press (2011 [2002]) ISBN 978-0-521-18071-9 Zbl 1221.68183
  • Pytheas Fogg, N. (ed.) Substitutions in dynamics, arithmetics and combinatorics Lecture Notes in Mathematics 1794 Springer (2002) ISBN 978-3-540-44141-0 Zbl 1014.11015
How to Cite This Entry:
Morphic word. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Morphic_word&oldid=37190