Namespaces
Variants
Actions

Mersenne number

From Encyclopedia of Mathematics
Revision as of 19:01, 31 December 2014 by Richard Pinch (talk | contribs) (divisibility)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


2020 Mathematics Subject Classification: Primary: 11A [MSN][ZBL]

Mersenne prime

A prime number of the form $M_n=2^n-1$, where $n=1,2,\ldots$. Mersenne numbers were considered in the 17th century by M. Mersenne. The numbers $M_n$ can be prime only for prime values of $n$, since if $d$ divides $n$ then $M_d$ divides $M_n$. For $n=2,3,5,7$ one obtains the prime numbers $M_n=3,7,31,127$. However, for $n=11$ the number $M_n$ is composite. For prime values of $n$ larger than $11$, among the $M_n$ one encounters both prime and composite numbers. The fast growth of the numbers $M_n$ makes their study difficult. By considering concrete numbers $M_n$ it has been shown, for example, that $M_{31}$ (L. Euler, 1750) and $M_{61}$ (I.M. Pervushin, 1883) are Mersenne numbers. Computers were used to find other very large Mersenne numbers, among them $M_{11213}$. The existence of an infinite set of Mersenne numbers is still an open problem (1989). This problem is closely related with the problem on the existence of perfect numbers.

References

[1] H. Hasse, "Vorlesungen über Zahlentheorie" , Springer (1950)
[2] A.A. Bukhshtab, "Number theory" , Moscow (1966) (In Russian)


Comments

Presently (1989) it is known that for the following $n$ the Mersenne number $M_n$ is prime: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 132049, 216091. See [a1].

The Lucas test provides a very simple method to establish primality of these numbers. This test consists of the following (cf. [a2]). Define $S_1=4$ and $S_{k+1}=S_k^2-2$ for $k\geq1$. Then $M_n$ is prime if and only if $M_n$ divides $S_{n-1}$ (and $n$ is a prime number).

References

[a1] H. Riesel, "Prime numbers and computer methods for factorisation" , Birkhäuser (1986)
[a2] D. Shanks, "Solved and unsolved problems in number theory" , Chelsea, reprint (1978)
How to Cite This Entry:
Mersenne number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mersenne_number&oldid=36008
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article