Namespaces
Variants
Actions

User:Richard Pinch/sandbox

From Encyclopedia of Mathematics
< User:Richard Pinch
Revision as of 19:26, 13 August 2013 by Richard Pinch (talk | contribs) (start article: Unitary divisor)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


A natural number $d$ is a unitary divisor of a number $n$ if $d$ is a divisor of $n$ and $d$ and $n/d$ are coprime, having no common factor other than 1. Equivalently, $d$ is a unitary divisor of $n$ if and only if every prime factor of $d$ appears to the same power in $d$ as in $n$.

The sum of unitary divisors function is denoted by $\sigma^*(n)$. The sum of the $k$-th powers of the unitary divisors is denoted by $\sigma_k^*(n)$. These functions are multiplicative arithmetic functions of $n$ that are not totally multiplicative. The Dirichlet series generating function is

$$ \sum_{n\ge 1}\sigma_k^*(n) n^{-s} = \frac{\zeta(s)\zeta(s-k)}{\zeta(2s-k)} . $$

The number of unitary divisors of $n$ is $\sigma_0(n) = 2^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of $n$.

A unitary or unitarily perfect number is equal to the sum of its aliquot unitary divisors.

References

  • Guy, Richard K. Unsolved Problems in Number Theory, Problem Books in Mathematics, 3rd ed. (Springer-Verlag, 2004) p.84, section B3. ISBN 0-387-20860-7 Zbl 1058.11001
  • Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. (Dordrecht: Kluwer Academic, 2004) pp. 179–327. ISBN 1-4020-2546-7. Zbl 1079.11001
How to Cite This Entry:
Richard Pinch/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox&oldid=30070