Namespaces
Variants
Actions

Regular torus

From Encyclopedia of Mathematics
Revision as of 17:25, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

An algebraic torus in a connected algebraic group (over an algebraically closed field) that is contained in only a finite number of Borel subgroups (cf. Borel subgroup). The maximal tori in are always regular (cf. Maximal torus). In general, a torus is regular if and only if its centralizer is a solvable group. One-dimensional regular tori and their corresponding one-parameter subgroups (also called regular) play an important role in algebraic group theory. A torus that is not regular is called singular. For reductive groups (cf. Reductive group), a criterion for the singularity of a torus can be given in terms of root systems. Thus, if is a maximal torus in containing and is the corresponding root system, then is singular if and only if for some .

A regular torus in is sometimes defined as a torus that contains a regular element (an element is regular if the dimension of the centralizer in is minimal), and it is then called a semi-regular torus if it is regular in the sense of the original definition (see, for example, [1]). Both these definitions are equivalent for reductive groups.

References

[1] A. Borel, "Linear algebraic groups" , Benjamin (1969)
[2] J.E. Humphreys, "Linear algebraic groups" , Springer (1975)
How to Cite This Entry:
Regular torus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regular_torus&oldid=18431
This article was adapted from an original article by V.P. Platonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article