Cornish-Fisher expansion
An asymptotic expansion of the quantiles of a distribution (close to the normal standard one) in terms of the corresponding quantiles of the standard normal distribution, in powers of a small parameter. It was studied by E.A. Cornish and R.A. Fisher [1]. If
is a distribution function depending on t
as a parameter, if \Phi ( x)
is the normal distribution function with parameters ( 0, 1) ,
and if F ( x, t) \rightarrow \Phi ( x)
as t \rightarrow 0 ,
then, subject to certain assumptions on F ( x, t) ,
the Cornish–Fisher expansion of the function x = F ^ {-} 1 [ \Phi ( z), t] (
where F ^ {-} 1
is the function inverse to F )
has the form
\tag{1 } x = z + \sum _ {i = 1 } ^ { {m } - 1 } S _ {i} ( z) t ^ {i} + O ( t ^ {m} ),
where the S _ {i} ( z) are certain polynomials in z . Similarly, one defines the Cornish–Fisher expansion of the function z = \Phi ^ {-} 1 [ F ( x, t)] ( \Phi ^ {-} 1 being the function inverse to \Phi ) in powers of x :
\tag{2 } z = x + \sum _ {i = 1 } ^ { {m } - 1 } Q _ {i} ( x) t ^ {i} + O ( t ^ {m} ),
where the Q _ {i} ( x) are certain polynomials in x . Formula (2) is obtained by expanding \Phi ^ {-} 1 in a Taylor series about the point \Phi ( x) and using the Edgeworth expansion. Formula (1) is the inversion of (2).
If X is a random variable with distribution function F ( x, t) , then the variable Z = Z ( X) = \Phi ^ {-} 1 [ F ( X , t) ] is normally distributed with parameters ( 0, 1) , and, as follows from (2), \Phi ( x) approximates the distribution function of the variable
\overline{Z}\; = \ X + \sum _ {i = 1 } ^ { {m } - 1 } Q _ {i} ( X) t ^ {i}
as t \rightarrow 0 better than it approximates F ( x, t) . If X has zero expectation and unit variance, then the first terms of the expansion (1) have the form
x = z + [ \gamma _ {1} h _ {1} ( z)] + [ \gamma _ {2} h _ {2} ( z) + \gamma _ {1} ^ {2} h _ {3} ( z)] + \dots .
Here \gamma _ {1} = {\kappa _ {3} / \kappa _ {2} } ^ {3/2} , \gamma _ {2} = \kappa _ {4} / \kappa _ {2} ^ {2} , with \kappa _ {r} the r - th cumulant of X , h _ {1} ( z) = H _ {2} ( z)/6 , h _ {2} ( z) = H _ {3} ( z) / 24 , h _ {3} ( z) = - [ 2H _ {3} ( z) + H _ {1} ( z)]/36 , and with H _ {r} ( z) the Hermite polynomials, defined by the relation
\phi ( z) H _ {r} ( z) = \ (- 1) ^ {r} \frac{d ^ {r} \phi ( z) }{dz ^ {r} } \ \ ( \phi ( z) = \Phi ^ \prime ( z)).
Concerning expansions for random variables obeying limit laws from the family of Pearson distributions see [3]. See also Random variables, transformations of.
References
[1] | E.A. Cornish, R.A. Fisher, "Moments and cumulants in the specification of distributions" Rev. Inst. Internat. Statist. , 5 (1937) pp. 307–320 |
[2] | M.G. Kendall, A. Stuart, "The advanced theory of statistics. Distribution theory" , 3. Design and analysis , Griffin (1969) |
[3] | L.N. Bol'shev, "Asymptotically Pearson transformations" Theor. Probab. Appl. , 8 (1963) pp. 121–146 Teor. Veroyatnost. i Primenen. , 8 : 2 (1963) pp. 129–155 |
Comments
For the methods of using an Edgeworth expansion to obtain (2) (see also Edgeworth series), see also [a1].
References
[a1] | P.J. Bickel, "Edgeworth expansions in non parametric statistics" Ann. Statist. , 2 (1974) pp. 1–20 |
[a2] | N.L. Johnson, S. Kotz, "Distributions in statistics" , 1 , Houghton Mifflin (1970) |
Cornish-Fisher expansion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cornish-Fisher_expansion&oldid=51347