Three-series theorem
Kolmogorov three-series theorem, three-series criterion
For each , let \tau _ {s} be the truncation function \tau _ {s} ( x)= s for x \geq s , \tau _ {s} ( x) = x for | x | \leq s , \tau _ {s} ( x)= - s for x \leq - s .
Let X _ {1} , X _ {2} \dots be independent random variables with distributions F _ {1} , F _ {2} ,\dots . Consider the sums S _ {n} = X _ {1} + \dots + X _ {n} , with distributions F _ {1} \star \dots \star F _ {n} . In order that these convolutions F _ {1} \star \dots \star F _ {n} tend to a proper limit distribution F as n \rightarrow \infty , it is necessary and sufficient that for all s> 0 ,
\tag{a1 } \sum _ { k } {\mathsf P} \{ | X _ {k} | > s \} < \infty ,
\tag{a2 } \sum \mathop{\rm Var} ( X _ {k} ^ { \prime } ) < \infty ,
\tag{a3 } \sum _ { k= } 1 ^ { n } {\mathsf E} ( X _ {k} ^ { \prime } ) \rightarrow m ,
where X _ {k} ^ { \prime } = \tau _ {s} ( X _ {k} ) .
This can be reformulated as the Kolmogorov three-series theorem: The series \sum X _ {k} converges with probability 1 if (a1)–(a3) hold, and it converges with probability zero otherwise.
References
[a1] | M. Loève, "Probability theory", Princeton Univ. Press (1963) pp. Sect. 16.3 |
[a2] | W. Feller, "An introduction to probability theory and its applications", 2, Wiley (1971) pp. Sect. IX.9 |
Three-series theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Three-series_theorem&oldid=51318