Namespaces
Variants
Actions

Spherical matrix distribution

From Encyclopedia of Mathematics
Revision as of 15:30, 1 July 2020 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT (latexlist): Replaced 155 formulas out of 159 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Jump to: navigation, search

A random matrix (cf. also Matrix variate distribution) is said to have

a right spherical distribution if X : = X \Lambda for all \Lambda \in \mathcal{O} ( n );

a left spherical distribution if X := \Gamma X for all \Gamma \in \mathcal{O} ( p ); and

a spherical distribution if X := \Gamma X \Lambda for all \Gamma \in \mathcal{O} ( p ) and all \Lambda \in \mathcal{O} ( n ). Here, \mathcal{O} ( r ) denotes the class of orthogonal ( r \times r )-matrices (cf. also Orthogonal matrix).

Instead of saying that X ( p \times n ) "has a" (left, right) spherical distribution, one also says that X ( p \times n ) itself is (left, right) spherical.

If X ( p \times n ) is right spherical, then

a) its transpose X ^ { \prime } is left spherical;

b) - X is right spherical, i.e. - X := X; and

c) for T ( p \times n ), its characteristic function is of the form \phi ( T T ^ { \prime } ).

The fact that X ( p \times n ) is right (left) spherical with characteristic function \phi ( T T ^ { \prime } ), is denoted by X \sim \operatorname { RS } _ { p , n } ( \phi ) (respectively, X \sim \operatorname { LS } _ { p , n } ( \phi )).

Let X \sim \operatorname { RS } _ { p , n } ( \phi ). Then:

1) for a constant matrix A ( q \times p ), A X \sim \operatorname { RS } _ { q , n } ( \psi ), where \psi ( T T ^ { \prime } ) = \phi ( A ^ { \prime } T T ^ { \prime } A ), T ( q \times n );

2) for X = ( X _ { 1 } , X _ { 2 } ), where X _ { 1 } is a ( p \times m )-matrix, X _ { 1 } \sim \operatorname { RS } _ { p , m } ( \phi );

3) if X X ^ { \prime } = I _ { p }, p \leq n, then X \sim \mathcal{U} _ { p , n}, the uniform distribution on the Stiefel manifold \mathcal{O} ( p , n ) = \{ H ( p \times n ) : H H ^ { \prime } = I _ { p } \}.

The probability distribution of a right spherical matrix X ( p \times n ) is fully determined by that of X X ^ { \prime }. It follows that the uniform distribution is the unique right spherical distribution over \mathcal{O} ( p , n ). For a right spherical matrix the density need not exist in general. However, if X has a density with respect to Lebesgue measure on , then it is of the form f ( X X ^ { \prime } ).

Examples of spherical distributions with a density.

When X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } ), the density of X is

\begin{equation*} \frac { 1 } { ( 2 \pi ) ^ { n p / 2 } } | \Sigma | ^ { - n / 2 } \operatorname { etr } \left\{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } X X ^ { \prime } \right\} , X \in \mathbf{R} ^ { p \times n }, \end{equation*}

with characteristic function

\begin{equation*} \operatorname { etr } \left\{ - \frac { 1 } { 2 } \Sigma ^ { - 1 } T T ^ { \prime } \right\}. \end{equation*}

Here, is the exponential trace function:

\begin{equation*} \operatorname { etr } ( A ) = \operatorname { exp } ( \operatorname { tr } ( A ) ). \end{equation*}

When X \sim T _ { p , n } ( \delta , 0 , \Sigma , I _ { n } ), the density of X is

\begin{equation*} \frac { \Gamma _ { p } \left[ \frac { \delta + n + p - 1 } { 2 } \right] } { ( 2 \pi ) ^ { n p / 2 } | \Sigma | ^ { n / 2 } \Gamma _ { p } \left[ \frac { \delta + p - 1 } { 2 } \right] }. \end{equation*}

\begin{equation*} .\left| I _ { p } + \Sigma ^ { - 1 } X X ^ { \prime } \right| ^ { - ( \delta + n + p - 1 ) / 2 } , X \in \mathbf{R} ^ { p \times n }, \end{equation*}

with characteristic function

\begin{equation*} \frac { B _ { - ( \delta + p - 1 ) / 2} \left( \frac { 1 } { 4 } \Sigma T T ^ { \prime } \right) } { \Gamma _ { p } \left[ \frac { 1 } { 2 } ( \delta + p - 1 ) \right] }, \end{equation*}

where B _ { \delta } ( \cdot ) is Herz's Bessel function of the second kind and of order \delta.

If X ( p \times n ) is right spherical and K ( n \times m ) is a fixed matrix, then the distribution of X K depends on K only through K ^ { \prime } K. Now, if K ^ { \prime } K = I _ { m }, then the distribution of X K is right spherical.

Let X = ( X _ { 1 } , X _ { 2 } ), with X _ { 1 } ( p \times ( n - m ) ), X _ { 2 } ( p \times m ), and let K ^ { \prime } = ( K _ { 1 } ^ { \prime } , K _ { 2 } ^ { \prime } ), where K _ { 1 } ( ( n - m ) \times m ) = 0, K _ { 2 } ( m \times m ) = I _ { m }. Then K ^ { \prime } K = I _ { m }, and therefore X K = X _ { 2 } is right spherical.

If the distribution of X is a mixture of right spherical distributions, then X is right spherical. It follows that if X ( p \times n ), conditional on a random variable v, is right spherical and Q ( q \times p ) is a function of v, then Q X is right spherical.

The results given above have obvious analogues for left spherical distributions.

Stochastic representation of spherical distributions.

Let X \sim \operatorname { RS } _ { p , n } ( \phi ). Then there exists a random matrix A ( p \times p ) such that

\begin{equation} \tag{a1} X : = A U, \end{equation}

where U \sim \mathcal{U} _ { p , n } is independent of A.

The matrix A in the stochastic representation (a1) is not unique. One can take it to be a lower (upper) triangular matrix with non-negative diagonal elements or a right spherical matrix with A \geq 0. Further, if it is additionally assumed that \mathsf P ( | XX ^ { \prime } | = 0 ) = 0, then the distribution of A is unique.

Given the assumption that A is lower triangular in the above representation, one can prove that it is unique. Indeed, let X \sim \operatorname { RS } _ { p , n } ( \phi ) and \mathsf{P} ( | XX ^ { \prime } | \neq 0 ) = 1. Then for A, B lower triangular matrices with positive diagonal elements and U \sim \mathcal{U} _ { p , n }, Q \sim \mathcal{U} _ { p , n }:

i) X : = A U and X = B U \Rightarrow A : = B;

ii) X : = A U and X : = A Q \Rightarrow U : = Q.

For studying the spherical distribution, singular value decomposition of the matrix X ( p \times n ) provides a powerful tool. When p \leq n, let X = G \Lambda H, where G \in \mathcal{O} ( p ), H \in \mathcal{O} ( p , n ), \Lambda = \operatorname { diag } ( \lambda _ { 1 } , \dots , \lambda _ { p } ), \lambda _ { 1 } \geq \ldots \geq \lambda _ { p } \geq 0, and the \lambda _ { i } are the eigenvalues of ( X X ^ { \prime } ) ^ { 1 / 2 }.

If X ( p \times n ), p \leq n, is spherical, then

\begin{equation} \tag{a2} X : = U \Lambda V, \end{equation}

where U \sim \mathcal U _ { p , p }, V \sim {\cal U} _ { p , n } and \Lambda are mutually independent.

If X ( p \times n ) is spherical, then its characteristic function is of the form \phi ( \lambda ( T T ^ { \prime } ) ), where T ( p \times n ), \lambda ( T T ^ { \prime } ) = \operatorname { diag } ( \tau _ { 1 } , \dots , \tau _ { 1 } ), and \tau _ { 1 } \geq \ldots \geq \tau _ { p } \geq 0 are the eigenvalues of TT'.

From the above it follows that, if the density of a spherical matrix X exists, then it is of the form f ( \lambda ( X X ^ { \prime } ) ).

Let X \sim \operatorname { RS } _ { p , n } ( \phi ). If the second-order moments of X exist (cf. also Moment), then

i) \mathsf{E} ( X ) = 0;

ii) \operatorname { cov } ( X ) = V \otimes I _ { n }, where V = \mathsf{E} ( {\bf x} _ { 1 } {\bf x} _ { 1 } ^ { \prime } ), X = ( \mathbf{x} _ { 1 } , \dots , \mathbf{x} _ { n } ).

Let X \sim \operatorname { RS } _ { p , n } ( \phi ) with density f ( X X ^ { \prime } ). Then the density of S = X X ^ { \prime }, n \geq p, is

\begin{equation*} \frac { \pi ^ { n p / 2 } } { \Gamma _ { p } ( n / 2 ) } | S | ^ { ( n - p - 1 ) / 2 } f ( S ) , \quad S > 0. \end{equation*}

Let X \sim \operatorname { RS } _ { p , n } ( \phi ) with density f ( X X ^ { \prime } ). Partition X as X = ( X _ { 1 } , \dots , X _ { r } ), X _ { i } ( p \times n _ { i } ), n _ { i } \geq p, i = 1 , \ldots , r, \sum _ { i = 1 } ^ { r } n _ { i } = n. Define S _ { i } = X _ { i } X_i ^ { \prime }, i = 1 , \ldots , r. Then ( S _ { 1 } , \dots , S _ { r } ) \sim L _ { r } ^ { ( 1 ) } ( f , n _ { 1 } / 2 , \dots , n _ { r } / 2 ) with probability density function

\begin{equation*} S _ { i } > 0 , i = 1 , \dots , r. \end{equation*}

The above result has been generalized further. Let X \sim \operatorname { RS } _ { p , n } ( \phi ) with density f ( X X ^ { \prime } ), and let A ( n \times n ) be a symmetric matrix. Then

\begin{equation} \tag{a3} X A X ^ { \prime } \sim L _ { 1 } ^ { ( 1 ) } \left( f _ { 1 } , \frac { { k } } { 2 } \right), \end{equation}

where f _ { 1 } ( T ) = W ^ { ( n - k ) / 2 } f ( T ) is the Weyl fractional integral of order ( n - k ) / 2 (cf. also Fractional integration and differentiation), if and only if A ^ { 2 } = A and \text{rank} ( A ) = k \geq p. Further, let A _ { 1 } ( n \times n ) , \dots , A _ { s } ( n \times n ) be symmetric matrices. Then

\begin{equation} \tag{a4} \left( X A _ { 1 } X ^ { \prime } , \ldots , X A _ { s } X ^ { \prime } ) \sim L _ { s } ^ { ( 1 ) } ( f _ { 1 } , \frac { n _ { 1 } } { 2 } , \dots , \frac { n _ { s } } { 2 } \right), \end{equation}

where f _ { 1 } ( T ) = W ^ { ( n - n _ { 1 } - \ldots - n _ { s } ) / 2 } f ( T ), if and only if A _ { i } A _ { j } = \delta _ { i j } A, and \operatorname{rank} ( A _ { i } ) = n_i, n _ { i } \geq p, i,j = 1 , \dots , s.

References

[a1] A.P. Dawid, "Spherical matrix distributions and multivariate model" J. R. Statist. Soc. Ser. B , 39 (1977) pp. 254–261
[a2] K.T. Fang, Y.T. Zhang, "Generalized multivariate analysis" , Springer (1990)
[a3] A.K. Gupta, T. Varga, "Elliptically contoured models in statistics" , Kluwer Acad. Publ. (1993)
How to Cite This Entry:
Spherical matrix distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spherical_matrix_distribution&oldid=50780
This article was adapted from an original article by A.K. Gupta (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article