Super-group
Lie super-group
A group object in the category of super-manifolds (cf. Super-manifold). A super-group $ {\mathcal G} $ is defined by a functor $ {\mathcal G} $ from the category of commutative superalgebras into the category of groups. Lie's theorems (cf. Lie theorem) are transferred to super-groups, a fact that gives the correspondence between super-groups and finite-dimensional Lie superalgebras (cf. Superalgebra).
Examples.
1) The super-group $ \mathop{\rm GL} _ {n\mid } m $ is defined by the functor $ C \mapsto \mathop{\rm GL} _ {n\mid } m ( C ) $ into groups of even invertible matrices from $ M _ {n\mid } m ( C) $( see Super-space), i.e. of matrices in the form
$$ \left ( where $ X, T $ are invertible matrices of orders $ n, m $ over $ C _ {\overline{0}\; } $, while $ Y, Z $ are matrices over $ C _ {\overline{1}\; } $. A homomorphism $ \mathop{\rm GL} _ {n\mid } m ( C) \rightarrow C _ {\overline{0}\; } ^ \star $ is defined by the formula $$
\mathop{\rm Ber} \left (
(the Berezinian);
2) $ \mathop{\rm SL} _ {n\mid } m = \mathop{\rm Ker} \mathop{\rm Ber} $;
3) $ \mathop{\rm OSp} _ {n\mid } 2m \subset \mathop{\rm GL} _ {n\mid } 2m $ and $ \Pi _ {n} \subset \mathop{\rm GL} _ {n\mid } m $; they leave invariant an even, or odd, non-degenerate symmetric bilinear form.
To every super-group $ {\mathcal G} $ and super-subgroup $ {\mathcal H} $ of it there is related a super-manifold $ {\mathcal G} / {\mathcal H} $, represented by a functor $ C \mapsto {\mathcal G} ( C) / {\mathcal H} ( C) $. This super-manifold is a homogeneous space of $ {\mathcal G} $.
References
[1] | Yu.I. Manin, "Gauge fields and complex geometry" , Springer (1988) (Translated from Russian) |
[2] | F.A. Berezin, "Introduction to superanalysis" , Reidel (1987) (Translated from Russian) |
[3] | D.A. Leites (ed.) , Seminar on supermanifolds , Kluwer (1990) |
Super-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Super-group&oldid=49457