Namespaces
Variants
Actions

E-number

From Encyclopedia of Mathematics
Revision as of 19:55, 14 October 2014 by Richard Pinch (talk | contribs) (See "E: the story of a number" by Maor)
Jump to: navigation, search

The limit of the expression $(1+1/n)^n$ as $n$ tends to infinity:

$$e=\lim_{n\to\infty}\left(1+\frac1n\right)^n=2.718281828459045\ldots;$$

it is the base for the natural logarithm. $e$ is a transcendental number, which was proved by C. Hermite in 1873 for the first time.


Comments

See also Exponential function; Exponential function, real; Logarithm of a number; Logarithmic function; Transcendental number.

How to Cite This Entry:
E-number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=E-number&oldid=43420
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article