Median algebra
2020 Mathematics Subject Classification: Primary: 08-XX [MSN][ZBL]
A set with a ternary operation $\langle x,y,z \rangle$ satisfying a set of axioms which generalise the notion of median, or majority vote, as a Boolean function.
The axioms are
- $\langle x,y,y \rangle = y$
- $\langle x,y,z \rangle = \langle z,x,y \rangle$
- $\langle x,y,z \rangle = \langle x,z,y \rangle$
- $\langle \langle x,w,y \rangle ,w,z \rangle = \langle x,w, \langle y,w,z \rangle \rangle$
The second and third axioms imply commutativity: it is possible (but not easy) to show that in the presence of the other three, axiom (3) is redundant. The fourth axiom implies associativity. There are other possible axiom systems: for example the two
- $\langle x,y,y \rangle = y$
- $\langle u,v, \langle u,w,x \rangle \rangle = \langle u,x, \langle w,u,v \rangle \rangle$
also suffice.
In a Boolean algebra the median function $\langle x,y,z \rangle = (x \vee y) \wedge (y \vee z) \wedge (z \vee x)$ satisfies these axioms, so that every Boolean algebra is a median algebra.
Birkhoff and Kiss showed that a median algebra with elements 0 and 1 satisfying $\langle 0,x,1 \rangle = x$ is a distributive lattice.
References
- Birkhoff, Garrett; Kiss, ; A ternary operation in distributive lattices, Bull. Amer. Math. Soc., 53 (1947) pp. 749-752
- Isbell, John R.; Median algebra, Trans. Amer. Math. Soc., 260 (1980) pp. 319-362
- Knuth, Donald E.; Introduction to combinatorial algorithms and Boolean functions, ser. The Art of Computer Programming 4.0 (2008) pp. 64-74 ISBN: 0-321-53496-4
Median algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Median_algebra&oldid=42702