Stieltjes transform
$$ \tag{* } F( x) = \int\limits _ { 0 } ^ \infty f( \frac{x)}{x+} t dt. $$
The Stieltjes transform arises in the iteration of the Laplace transform and is also a particular case of a convolution transform.
One of the inversion formulas is as follows: If the function $ f( t) \sqrt t $ is continuous and bounded on $ ( 0, \infty ) $, then
$$ \lim\limits _ {n \rightarrow \infty } \frac{(- 1) ^ {n} }{2 \pi } \left ( \frac{e}{n} \right ) ^ {2n} [ x ^ {2n} F ^ { ( n) } ( x)] ^ {(} n) = f( x) $$
for $ x \in ( 0, \infty ) $.
The generalized Stieltjes transform is
$$ F( x) = \int\limits _ { 0 } ^ \infty f( t) \frac{dt}{( x+ t) ^ \rho } , $$
where $ \rho $ is a complex number.
The integrated Stieltjes transform is
$$ F( x) = \int\limits _ { 0 } ^ \infty K( x, t) f( t) dt, $$
where
$$ K( x, t) = \left \{ \begin{array}{ll} \frac{ \mathop{\rm ln} x / t }{x-} t , & t \neq x, \\ \frac{1}{x} , & t = x. \\ \end{array} \right .$$
Stieltjes transforms are also introduced for generalized functions. The transform (*) was studied by Th.J. Stieltjes (1894–1895).
References
[1] | D.V. Widder, "The Laplace transform" , Princeton Univ. Press (1972) |
[2] | R.P. Boas, D.V. Widder, "The iterated Stieltjes transform" Trans. Amer. Math. Soc. , 45 (1939) pp. 1–72 |
[3] | E.C. Titchmarsh, "Introduction to the theory of Fourier integrals" , Oxford Univ. Press (1948) |
[4] | Y.A. Brychkov, A.P. Prudnikov, "Integral transforms of generalized functions" , Gordon & Breach (1989) (Translated from Russian) |
Stieltjes transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stieltjes_transform&oldid=49447