Power associativity
From Encyclopedia of Mathematics
A binary operation $\star$ on a set $X$ is power associative if each element $x$ generates an associative magma: that is, exponentiation $x \mapsto x^n$ is well-defined for positive integers $n$, and $x^{m+n} = x^m \star x^n$. The set of powers of $x$ thus forms a semi-group.
See also: Algebra with associative powers.
References
- Bruck, Richard Hubert A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. 20 Springer (1958) Zbl 0081.01704
How to Cite This Entry:
Power associativity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power_associativity&oldid=37213
Power associativity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Power_associativity&oldid=37213