Opposite ring
From Encyclopedia of Mathematics
2020 Mathematics Subject Classification: Primary: 16-XX [MSN][ZBL]
of a ring $R$
The ring $R^{\mathrm{op}}$ having the same additive group as $R$ but with multiplication $\circ$ defined by $x \circ y = y \cdot x$ where $\cdot$ is multiplication in $R$.
References
- Igor R. Shafarevich, tr. M. Reid, Basic Notions of Algebra, Springer (2006) ISBN 3-540-26474-4. p.67
How to Cite This Entry:
Opposite ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Opposite_ring&oldid=35150
Opposite ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Opposite_ring&oldid=35150