Namespaces
Variants
Actions

Decidable predicate

From Encyclopedia of Mathematics
Revision as of 18:17, 9 November 2014 by Richard Pinch (talk | contribs) (Category:Logic and foundations)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

An -place predicate P given on a certain set of constructive objects (for example, natural numbers) M for which there exists an algorithm which enables one to find the value (T or F) of P on any n-tuple a_1,\ldots,a_n of elements in M. In other words, a predicate is decidable if, regarded as an n-place function on M with values in the set \{\text T,\text F\}, it is a computable function.

When the concept of a recursive function or some equivalent concept is used as a mathematical refinement of the concept of computability, then the term "recursive predicate" is usually employed instead of "decidable predicate" .


Comments

So, P is a decidable predicate if the set of n-tuples on which P takes the value T (true) is a decidable set.

How to Cite This Entry:
Decidable predicate. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Decidable_predicate&oldid=31759
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article