Stratified sample
A sample which is broken up into several samples of smaller sizes by certain distinguishing marks (characteristics). Let each element of some sample of size $ N \geq 2 $
possess one and only one of $ k \geq 2 $
possible marks. Then the original sample can be broken into $ k $
samples of sizes $ n _ {1} \dots n _ {k} $,
respectively $ ( n _ {1} + \dots + n _ {k} = N) $:
$$
where the $ i $- th sample $ X _ {i1} \dots X _ {in _ {i} } $ contains only those elements of the original sample which have the mark $ i $. As a result of this decomposition, the original sample becomes stratified into $ k $ strata $ X _ {i1} \dots X _ {in _ {i} } $, $ i = 1 \dots k $, where the $ i $- th stratum contains information about the $ i $- th mark. This notion gives rise, for example, to realizations of the $ X $- component of a two-dimensional random variable $ ( X, Y) $ whose second component $ Y $ has a discrete distribution.
References
[1] | S.S. Wilks, "Mathematical statistics" , Wiley (1962) |
Comments
References
[a1] | W.G. Cochran, "Sampling techniques" , Wiley (1977) |
Stratified sample. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stratified_sample&oldid=18315