Potential operator
From Encyclopedia of Mathematics
A mapping $ A $
of a Banach space $ X $
into the dual space $ X ^ {*} $
that is the gradient of some functional $ f \in X ^ {*} $,
i.e. is such that
$$ \langle A x , h \rangle = \lim\limits _ { t\rightarrow } 0 \ \frac{f ( x + t h ) - f ( x) }{t} . $$
For instance, any bounded self-adjoint operator $ A $ defined on a Hilbert space $ H $ is potential:
$$ Ax = \mathop{\rm grad} \left \{ \frac{1}{2} \langle A x , x \rangle \right \} ,\ \ x \in H . $$
References
[1] | M.M. Vainberg, "Variational method and method of monotone operators in the theory of nonlinear equations" , Wiley (1973) (Translated from Russian) |
[2] | H. Gajewski, K. Gröger, K. Zacharias, "Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen" , Akademie Verlag (1974) |
How to Cite This Entry:
Potential operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Potential_operator&oldid=17586
Potential operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Potential_operator&oldid=17586
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article