Shift parameter
From Encyclopedia of Mathematics
A parameter $ \theta $,
$ \theta \in \Theta \subset \mathbf R ^ {k} $,
of a family of functions $ \{ \phi _ \theta ( \cdot ) \} $
which are defined on $ \mathbf R ^ {k} $
by the formula
$$ \phi _ \theta ( \cdot ) = \phi ( \cdot - \theta ) \ \ \textrm{ for } \textrm{ any } \theta \in \Theta , $$
where $ \phi ( \cdot ) $ is a given function on $ \mathbf R ^ {k} $.
References
[1] | I.A. Ibragimov, R.Z. [R.Z. Khas'minskii] Has'minskii, "Statistical estimation: asymptotic theory" , Springer (1981) (Translated from Russian) |
Comments
This parameter is also called a location parameter.
How to Cite This Entry:
Shift parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Shift_parameter&oldid=16795
Shift parameter. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Shift_parameter&oldid=16795
This article was adapted from an original article by M.S. Nikulin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article