Interior mapping
A mapping $ f: X \rightarrow Y $
from a topological space $ X $
into a topological space $ Y $
such that the image of any set $ U $
open in $ X $
is also open in $ Y $,
while the inverse image $ f ^ { - 1 } ( y) $
of any point $ y \in Y $
is totally disconnected (i.e. does not contain connected components other than points).
Let $ F $ map some Riemann surface $ R $ into the sphere $ S ^ {2} $; a homeomorphism $ T: M \rightarrow R $ from an oriented surface $ M $ will then induce a mapping
$$ \widetilde{F} = F \circ T: M \rightarrow S ^ {2} , $$
which is topologically equivalent with $ F $. For an analytic function $ F $ and some mapping $ \widetilde{F} $ to be topologically equivalent it is necessary and sufficient for $ \widetilde{F} $ to be an interior mapping (then there exists a homeomorphism $ T $ such that $ \widetilde{F} = F \circ T $) (Stoilow's theorem).
The local structure of the interior mapping $ \widetilde{F} : M \rightarrow \mathbf R ^ {2} $ may be described as follows. For any point $ a \in M $ there exist a neighbourhood $ U( a) $ and homeomorphisms $ T _ {1} : B \rightarrow U( a) $ of the unit disc $ B = \{ {z \in \mathbf R ^ {2} } : {| z | < 1 } \} $ onto $ U( a) $ and $ T _ {2} : \widetilde{F} ( U( a)) \rightarrow B $ such that $ T _ {2} \circ \widetilde{F} \circ T _ {1} = z ^ {n} $.
References
[1] | S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938) |
Comments
References
[a1] | G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10 |
[a2] | G.T. Whyburn, "Topological analysis" , Princeton Univ. Press (1964) |
Interior mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interior_mapping&oldid=16109