Darboux vector
The vector $ \pmb\delta $
of the instantaneous axis of rotation around which the natural trihedral of a curve $ L $
is rotating during the uniform movement of a point $ M $
along the curve $ L $.
The Darboux vector lies in the rectifying plane of the curve $ L $
and is expressed in terms of the principal normal $ \mathbf n $
and the tangent $ \mathbf t $
of $ L $
by the formula
$$ \pmb\delta = \sqrt {\tau ^ {2} + \sigma ^ {2} } ( \mathbf t \cos \theta + \mathbf n \sin \theta ) , $$
where $ \tau $ and $ \sigma $ are the curvature and the torsion of $ L $ and $ \theta $ is the angle between the Darboux vector and the tangent to $ L $. The Frénet formulas may be written with the aid of the Darboux vector as follows:
$$ \dot{\mathbf t} = [ \pmb\delta , \mathbf t ] ,\ \ \dot{\mathbf n} = [ \pmb\delta , \mathbf n ] ,\ \ \dot{\mathbf b} = [ \pmb\delta , \mathbf b ] , $$
where $ \mathbf b $ is the binormal of $ L $.
G. Darboux [1] was the first to point out the geometric significance of the Darboux vector for the natural trihedral of a space curve.
References
[1] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1 , Gauthier-Villars (1887) pp. 1–18 |
[2] | V.F. Kagan, "Foundations of the theory of surfaces in a tensor setting" , 1 , Moscow-Leningrad (1947) (In Russian) |
Comments
The natural trihedral (a name used by S. Sternberg [a1]) is commonly called Frénet frame (also Frénet trihedron).
References
[a1] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) |
[a2] | W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973) |
Darboux vector. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Darboux_vector&oldid=14668