Rectangle rule
A formula for calculating an integral over a finite interval $[a,b]$:
$$\int\limits_a^bf(x)dx\cong h\sum_{k=1}^Nf(\alpha+(k-1)h),\tag{*}$$
where $h=(b-a)/N$ and $\alpha\in[a,a+h]$. Its algebraic degree of accuracy is 1 if $\alpha=a+h/2$ and 0 otherwise.
The quadrature formula \ref{*} is exact for the trigonometric functions
$$\cos\frac{2\pi}{b-a}kx,\quad\sin\frac{2\pi}{b-a}kx,\quad k=0,\dots,N-1.$$
If $b-a=2\pi$, then \ref{*} is exact for all trigonometric polynomials of order at most $N-1$; moreover, its trigonometric degree of accuracy is $N-1$. No other quadrature formula with $N$ real nodes can have trigonometric degree of accuracy larger than $N-1$, so that the rectangle rule with $b-a=2\pi$ has the highest trigonometric degree of accuracy.
Let $R(f,\alpha)$ be the error of the rectangle rule, i.e. the difference between the left- and right-hand sides of \ref{*}. If the integrand $f$ is twice continuously differentiable on $[a,b]$, then for $\alpha=a+h/2$ one has
$$R\left(f,a+\frac h2\right)=\frac{b-a}{24}h^2f''(\xi),$$
for some $\xi\in[a,b]$. If $f$ is a periodic function with period $b-a$ and has a continuous derivative of order $2k$ (where $k$ is a natural number) on the entire real axis, then for any $\alpha\in[a,a+h]$,
$$R(f,\alpha)=-(b-a)B_{2k}\frac{h^{2k}}{(2k)!}f^{(2k)}(\eta),$$
for some $\eta\in[a,b]$, where $B_{2k}$ is the Bernoulli number (cf. Bernoulli numbers).
Comments
References
[a1] | D.M. Young, R.T. Gregory, "A survey of numerical mathematics" , Dover, reprint (1988) pp. 362ff |
Rectangle rule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rectangle_rule&oldid=13753