Rotation
A special kind of motion, for which at least one point in space remains at rest. If the rotation is in a plane, the fixed point is called the centre of the rotation; if the rotation is in space, the fixed straight line is called the axis of rotation. A rotation in a Euclidean space is called proper (a rotation of the first kind) or improper (a rotation of the second kind) depending on whether or not the orientation in space remains unchanged.
A proper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates $ x, y $ by the formulas
$$ \widetilde{x} = x \cos \phi - y \sin \phi ,\ \ \widetilde{y} = x \sin \phi + y \cos \phi , $$
where $ \phi $ is the rotation angle and the centre of the rotation is the coordinate origin. A proper rotation through an angle $ \phi $ may be represented as the product of two axial symmetries (reflections, cf. Reflection) with axes forming an angle of $ \phi / 2 $ with each other. An improper rotation in a plane can be analytically expressed in Cartesian orthogonal coordinates $ x, y $ by the formulas
$$ \widetilde{x} = x \cos \phi + y \sin \phi ,\ \ \widetilde{y} = x \sin \phi - y \cos \phi , $$
where $ \phi $ is the rotation angle and the centre of the rotation is the coordinate origin. An improper rotation in a plane may be represented as a product of a proper rotation by an axial symmetry.
A rotation in an $ n $- dimensional Euclidean space can be analytically expressed by an orthogonal matrix in canonical form:
$$ M = \left \| where $$ u _ {i} = \ \left \|
$ \epsilon ^ {s} $ is the identity matrix of order $ s $( $ s= p, q $). The following cases are possible:
1) $ p = n $— the identity transformation;
2) $ q = n $— the rotation is a central symmetry;
3) $ p + q = n $— the rotation is a symmetry with respect to a $ p $- plane (a reflection in a $ p $- plane);
4) $ M $ does not contain submatrices $ \epsilon ^ {p} $ and $ - \epsilon ^ {q} $— the rotation is called a rotation around a unique fixed point;
5) $ M $ contains the submatrices $ u _ {i} $ and $ \epsilon ^ {p} $ but does not contain the submatrix $ - \epsilon ^ {q} $— the rotation is a rotation around a $ p $- plane;
6) $ M $ contains the submatrices $ u _ {i} $ and $ - \epsilon ^ {q} $ but does not contain the submatrix $ \epsilon ^ {p} $— the rotation is called a rotational reflection in an $ ( n - q) $- plane.
The rotations of a Euclidean space around a given point form a group with respect to multiplication of rotations. This group is isomorphic to the group of orthogonal transformations (cf. Orthogonal transformation) of the vector space $ \mathbf R ^ {n} $ or to the group of orthogonal matrices of order $ n $ over the field $ \mathbf R $. The rotation group of the space $ E _ {n} $ is an $ n( n - 1)/2 $- dimensional Lie group with an intransitive action on $ E _ {n} $.
References
[1] | B.A. Rozenfel'd, "Multi-dimensional spaces" , Moscow (1966) (In Russian) |
[2] | B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian) |
[3] | P.A. Shirokov, "Tensor calculus. Tensor algebra" , Kazan' (1961) (In Russian) |
Comments
References
[a1] | M. Berger, "Geometry" , I , Springer (1987) |
[a2] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963) |
[a3] | M. Greenberg, "Euclidean and non-Euclidean geometry" , Freeman (1980) pp. 105 |
[a4] | B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian) |
[a5] | B. Artmann, "Lineare Algebra" , Birkhäuser (1986) |
[a6] | P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958) |
Rotation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotation&oldid=11806