Namespaces
Variants
Actions

Difference between revisions of "Brooks-Jewett theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (details)
m (details)
Line 6: Line 6:
 
Out of 57 formulas, 55 were replaced by TEX code.-->
 
Out of 57 formulas, 55 were replaced by TEX code.-->
  
{{TEX|semi-auto}}{{TEX|part}}
+
{{TEX|semi-auto}}{{TEX|done}}
 
Let $X$ be a [[Topological group|topological group]]. A [[set function]] $m : \Sigma \rightarrow X$ is exhaustive (also called strongly bounded) if $\operatorname { lim } _ { n \rightarrow \infty } m ( E _ { n } ) = 0$ for each sequence $\{ E _ { n } \}$ of pairwise disjoint sets from the $\sigma$-algebra $\Sigma$ (cf. also [[Measure|Measure]]). A sequence $\{ m_i \}$ of set functions $m _ { i } : \Sigma \rightarrow X$, $i \in \mathbf{N}$, is uniformly exhaustive if $\operatorname { lim } _ { n \rightarrow \infty } m _ { i } ( E _ { n } ) = 0$ uniformly in $i$ for each sequence $\{ E _ { n } \}$ of pairwise disjoint sets from the $\sigma$-algebra $\Sigma$.
 
Let $X$ be a [[Topological group|topological group]]. A [[set function]] $m : \Sigma \rightarrow X$ is exhaustive (also called strongly bounded) if $\operatorname { lim } _ { n \rightarrow \infty } m ( E _ { n } ) = 0$ for each sequence $\{ E _ { n } \}$ of pairwise disjoint sets from the $\sigma$-algebra $\Sigma$ (cf. also [[Measure|Measure]]). A sequence $\{ m_i \}$ of set functions $m _ { i } : \Sigma \rightarrow X$, $i \in \mathbf{N}$, is uniformly exhaustive if $\operatorname { lim } _ { n \rightarrow \infty } m _ { i } ( E _ { n } ) = 0$ uniformly in $i$ for each sequence $\{ E _ { n } \}$ of pairwise disjoint sets from the $\sigma$-algebra $\Sigma$.
  
Line 23: Line 23:
 
SCP) An algebra $\mathcal{A}$ has the sequential completeness property if each disjoint sequence $\{ E _ { n } \}$ from $\mathcal{A}$ has a subsequence $\{ E _ { n_j} \}$ whose union is in $\mathcal{A}$.
 
SCP) An algebra $\mathcal{A}$ has the sequential completeness property if each disjoint sequence $\{ E _ { n } \}$ from $\mathcal{A}$ has a subsequence $\{ E _ { n_j} \}$ whose union is in $\mathcal{A}$.
  
SIP) An algebra $\mathcal{A}$ has the subsequentional interpolation property if for each subsequence $\{ A _ { j n } \}$ of each disjoint sequence $\{ A _ { j } \}$ from $\mathcal{A}$ there are a subsequence $\{ A _ { j n _ { k } } \}$ and a set $B \in \mathcal{A}$ such that
+
SIP) An algebra $\mathcal{A}$ has the subsequentional interpolation property if for each subsequence $\{ A _ { j n } \}$ of each disjoint sequence $\{ A _ { j } \}$ from $\mathcal{A}$ there are a subsequence $\{ A _ {j_{n_k } } \}$ and a set $B \in \mathcal{A}$ such that
 
 
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b120/b120490/b12049043.png"/></td> </tr></table>
 
  
 +
\begin{equation*}
 +
    A_{j_{n_k}} \subset B, \quad k \in \mathbf{N},
 +
\end{equation*}
 
and $A _ { j } \cap B = \emptyset$ for $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$.
 
and $A _ { j } \cap B = \emptyset$ for $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$.
  
Line 42: Line 43:
  
 
====References====
 
====References====
* {{Ref|a1}} J. Brooks,  R. Jewett,   "On finitely additive vector measures"  ''Proc. Nat. Acad. Sci. USA'' , '''67'''  (1970)  pp. 1294–1298
+
* {{Ref|a1}} J. Brooks,  R. Jewett, "On finitely additive vector measures"  ''Proc. Nat. Acad. Sci. USA'' , '''67'''  (1970)  pp. 1294–1298
* {{Ref|a2}} C. Constantinescu,   "Some properties of spaces of measures"  ''Suppl. Atti Sem. Mat. Fis. Univ. Modena'' , '''35'''  (1991)  pp. 1–286
+
* {{Ref|a2}} C. Constantinescu, "Some properties of spaces of measures"  ''Suppl. Atti Sem. Mat. Fis. Univ. Modena'' , '''35'''  (1991)  pp. 1–286
* {{Ref|a3}} L. Drewnowski,   "Equivalence of Brooks–Jewett, Vitali–Hahn–Saks and Nikodým theorems"  ''Bull. Acad. Polon. Sci.'' , '''20'''  (1972)  pp. 725–731
+
* {{Ref|a3}} L. Drewnowski, "Equivalence of Brooks–Jewett, Vitali–Hahn–Saks and Nikodým theorems"  ''Bull. Acad. Polon. Sci.'' , '''20'''  (1972)  pp. 725–731
* {{Ref|a4}} A.B. D'Andrea,   P. de Lucia,   "The Brooks–Jewett theorem on an orthomodular lattice"  ''J. Math. Anal. Appl.'' , '''154'''  (1991)  pp. 507–522
+
* {{Ref|a4}} A.B. D'Andrea, P. de Lucia, "The Brooks–Jewett theorem on an orthomodular lattice"  ''J. Math. Anal. Appl.'' , '''154'''  (1991)  pp. 507–522
* {{Ref|a5}} E. Pap,   "Null-additive set functions" , Kluwer Acad. Publ. &amp;Ister Sci.  (1995)
+
* {{Ref|a5}} E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &amp;Ister Sci.  (1995)
* {{Ref|a6}} H. Weber,   "Compactness in spaces of group-valued contents, the Vitali–Hahn–Saks theorem and the Nikodym's boundedness theorem"  ''Rocky Mtn. J. Math.'' , '''16'''  (1986)  pp. 253–275
+
* {{Ref|a6}} H. Weber, "Compactness in spaces of group-valued contents, the Vitali–Hahn–Saks theorem and the Nikodym's boundedness theorem"  ''Rocky Mtn. J. Math.'' , '''16'''  (1986)  pp. 253–275

Revision as of 08:44, 31 July 2025

Let $X$ be a topological group. A set function $m : \Sigma \rightarrow X$ is exhaustive (also called strongly bounded) if $\operatorname { lim } _ { n \rightarrow \infty } m ( E _ { n } ) = 0$ for each sequence $\{ E _ { n } \}$ of pairwise disjoint sets from the $\sigma$-algebra $\Sigma$ (cf. also Measure). A sequence $\{ m_i \}$ of set functions $m _ { i } : \Sigma \rightarrow X$, $i \in \mathbf{N}$, is uniformly exhaustive if $\operatorname { lim } _ { n \rightarrow \infty } m _ { i } ( E _ { n } ) = 0$ uniformly in $i$ for each sequence $\{ E _ { n } \}$ of pairwise disjoint sets from the $\sigma$-algebra $\Sigma$.

Being a generalization of the Nikodým convergence theorem, the Brooks–Jewett theorem [a1] says that for a pointwise-convergent sequence $\{ m _ { n } \}$ of finitely additive scalar and exhaustive set functions (strongly additive) defined on a $\sigma$-algebra $\Sigma$, i.e. such that $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m ( E )$, $E \in \Sigma$:

i) $m$ is an additive and exhaustive set function;

ii) $\{ m _ { n } \}$ is uniformly exhaustive.

There is a generalization of the Brooks–Jewett theorem for $k$-triangular set functions defined on algebras with some weak $\sigma$-conditions ($m : \Sigma \rightarrow [ 0 , \infty )$ is said to be $k$-triangular for $k \geq 1$ if $m ( \emptyset ) = 0$ and

\begin{equation*} m ( A ) - k m ( B ) \leq m ( A \bigcup B ) \leq m ( A ) + k m ( B ) \end{equation*}

whenever $A , B \in \Sigma$, $A \cap B = \emptyset$). The following definitions are often used [a2] [a6] [a5]:

SCP) An algebra $\mathcal{A}$ has the sequential completeness property if each disjoint sequence $\{ E _ { n } \}$ from $\mathcal{A}$ has a subsequence $\{ E _ { n_j} \}$ whose union is in $\mathcal{A}$.

SIP) An algebra $\mathcal{A}$ has the subsequentional interpolation property if for each subsequence $\{ A _ { j n } \}$ of each disjoint sequence $\{ A _ { j } \}$ from $\mathcal{A}$ there are a subsequence $\{ A _ {j_{n_k } } \}$ and a set $B \in \mathcal{A}$ such that

\begin{equation*} A_{j_{n_k}} \subset B, \quad k \in \mathbf{N}, \end{equation*} and $A _ { j } \cap B = \emptyset$ for $j \in \mathbf{N} \backslash \{ j _ { n_k } : k \in \mathbf{N} \}$.

According to [a5]: Let $\mathcal{A}$ satisfy SIP) and let $\{ m _ { n } \}$, $m _ { n } : {\cal A} \rightarrow [ 0 , + \infty )$, $n \in \mathbf N$, be a sequence of $k$-triangular exhaustive set functions. If the limit

\begin{equation*} \operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m _ { 0 } ( E ) \end{equation*}

exists for each $E \in \mathcal{A}$ and $m_0$ is exhaustive, then $\{ m _ { n } \} _ { n = 0 } ^ { \infty }$ is uniformly exhaustive and $m_0$ is $k$-triangular.

There are further generalizations of the Brooks–Jewett theorem, with respect to: the domain of the set functions (orthomodular lattices, $D$-posets); properties of the set functions; and the range (topological groups, uniform semi-groups, uniform spaces), [a2] [a4] [a5].

It is known that for additive set functions the Brooks–Jewett theorem is equivalent with the Nikodým convergence theorem, and even more with the Vitali–Hahn–Saks theorem [a3].

See also Diagonal theorem.

References

  • [a1] J. Brooks, R. Jewett, "On finitely additive vector measures" Proc. Nat. Acad. Sci. USA , 67 (1970) pp. 1294–1298
  • [a2] C. Constantinescu, "Some properties of spaces of measures" Suppl. Atti Sem. Mat. Fis. Univ. Modena , 35 (1991) pp. 1–286
  • [a3] L. Drewnowski, "Equivalence of Brooks–Jewett, Vitali–Hahn–Saks and Nikodým theorems" Bull. Acad. Polon. Sci. , 20 (1972) pp. 725–731
  • [a4] A.B. D'Andrea, P. de Lucia, "The Brooks–Jewett theorem on an orthomodular lattice" J. Math. Anal. Appl. , 154 (1991) pp. 507–522
  • [a5] E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)
  • [a6] H. Weber, "Compactness in spaces of group-valued contents, the Vitali–Hahn–Saks theorem and the Nikodym's boundedness theorem" Rocky Mtn. J. Math. , 16 (1986) pp. 253–275
How to Cite This Entry:
Brooks-Jewett theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Brooks-Jewett_theorem&oldid=56172
This article was adapted from an original article by E. Pap (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article