Difference between revisions of "Srivastava code"
From Encyclopedia of Mathematics
m (→References: isbn link) |
m |
||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | A class of parameterised [[error-correcting code]]s. They are block | + | A class of parameterised [[error-correcting code]]s. They are block linear codes which are a special case of [[alternant code]]s. |
− | The original ''Srivastava code'' of length $n$ and parameter $s$ over | + | The original ''Srivastava code'' of length $n$ and parameter $s$ over $GF(q)$ is defined by an $n \times s$ [[parity check matrix]] $H$ of [[alternant matrix|alternant]] form |
$$ | $$ | ||
\begin{bmatrix} | \begin{bmatrix} |
Latest revision as of 18:11, 28 July 2025
A class of parameterised error-correcting codes. They are block linear codes which are a special case of alternant codes.
The original Srivastava code of length $n$ and parameter $s$ over $GF(q)$ is defined by an $n \times s$ parity check matrix $H$ of alternant form $$ \begin{bmatrix} \frac{\alpha_1^\mu}{\alpha_1-w_1} & \cdots & \frac{\alpha_n^\mu}{\alpha_n-w_1} \\ \vdots & \ddots & \vdots \\ \frac{\alpha_1^\mu}{\alpha_1-w_s} & \cdots & \frac{\alpha_n^\mu}{\alpha_n-w_s} \\ \end{bmatrix} $$ where the $\alpha_i$ and $z_i$ are elements of $GF(q^m)$.
The parameters of this code are length $n$, dimension $\ge n - ms$ and minimum distance $\ge s+1$.
References
- F.J. MacWilliams. The Theory of Error-Correcting Codes (North-Holland, 1977) ISBN 0-444-85193-3. pp.357-360
How to Cite This Entry:
Srivastava code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Srivastava_code&oldid=56101
Srivastava code. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Srivastava_code&oldid=56101