Difference between revisions of "Ceva theorem"
(TeX) |
(gather refs) |
||
Line 11: | Line 11: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> G. Ceva, "De lineis rectis se invicem secantibus statica constructio" , Milano (1678)</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''I''' , Springer (1987)</TD></TR> | |
− | + | </table> | |
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 18:20, 11 May 2024
A theorem on the relation between the lengths of certain lines intersecting a triangle. Let $A_1,B_1,C_1$ be three points lying, respectively, on the sides $BC$, $CA$ and $AB$ of a triangle $ABC$. For the lines $AA_1$, $BB_1$ and $CC_1$ to intersect in a single point or to be all parallel it is necessary and sufficient that
$$\frac{AC_1}{C_1B}\cdot\frac{BA_1}{A_1C}\cdot\frac{CB_1}{B_1A}=1.$$
Lines $AA_1$, $BB_1$ and $CC_1$ that meet in a single point and pass through the vertices of a triangle are called Ceva, or Cevian, lines. Ceva's theorem is metrically dual to the Menelaus theorem. It is named after G. Ceva [1].
Ceva's theorem can be generalized to the case of a polygon. Let a point $0$ be given in a planar polygon with an odd number of vertices $A_1\dots A_{2n-1}$, and suppose that the lines $0A_1,\dots,0A_{2n-1}$ intersect the sides of the polygon opposite to $A_1,\dots,A_{2n-1}$ respectively in points $a_n,\dots,a_{2n-1}$, $a_1,\dots,a_{n-1}$. In this case
$$\frac{A_1a_1}{a_1A_2}\cdot\frac{A_2a_2}{a_2A_3}\cdots\frac{A_{2n-2}a_{2n-2}}{a_{2n-2}A_{2n-1}}\cdot\frac{A_{2n-1}a_{2n-1}}{a_{2n-1}A_1}=1.$$
References
[1] | G. Ceva, "De lineis rectis se invicem secantibus statica constructio" , Milano (1678) |
[a1] | M. Berger, "Geometry" , I , Springer (1987) |
Ceva theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ceva_theorem&oldid=55766