Difference between revisions of "Thomas-Fermi theory"
(ouch) |
m (removed extra paragraph breaks) |
||
Line 1: | Line 1: | ||
+ | |||
<!--This article has been texified automatically. Since there was no Nroff source code for this article, | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | ||
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
Line 9: | Line 10: | ||
''Fermi–Thomas theory'' | ''Fermi–Thomas theory'' | ||
− | Sometimes called the | + | Sometimes called the "statistical theory" , it was invented by L.H. Thomas [[#References|[a13]]] and E. Fermi [[#References|[a2]]], shortly after E. Schrödinger invented his quantum-mechanical wave equation, in order to approximately describe the electron density, $\rho ( x )$, $x \in \mathbf{R} ^ { 3 }$, and the ground state energy, $E ( N )$ for a large atom or molecule with a large number, $N$, of electrons. |
− | "statistical theory" , | + | Schrödinger's equation, which would give the exact density and energy, cannot be easily handled when $N$ is large (cf. also [[Schrödinger equation|Schrödinger equation]]). |
− | it was invented by | ||
− | L.H. Thomas | ||
− | [[#References|[a13]]] | ||
− | and | ||
− | E. Fermi | ||
− | [[#References|[a2]]], | ||
− | shortly after | ||
− | E. Schrödinger | ||
− | invented his | ||
− | quantum-mechanical wave equation, in order to approximately | ||
− | describe the | ||
− | electron density, | ||
− | $\rho ( x )$, | ||
− | $x \in \mathbf{R} ^ { 3 }$, | ||
− | and the | ||
− | ground state energy, | ||
− | $E ( N )$ | ||
− | for a large atom or molecule with a large number, | ||
− | $N$, | ||
− | of electrons. Schrödinger's | ||
− | equation, which would give the exact density and energy, cannot be | ||
− | easily handled when | ||
− | $N$ | ||
− | is large (cf. also | ||
− | [[Schrödinger equation|Schrödinger equation]]). | ||
− | A starting point for the theory is the | + | A starting point for the theory is the Thomas–Fermi energy functional. |
− | Thomas–Fermi energy functional. | + | For a molecule with $K$ nuclei of charges $Z_i > 0$ and locations $R_{i} \in \mathbf{R} ^ { 3 }$ ($i = 1 , \ldots , K$), it is |
− | For a molecule with | + | \begin{equation} \tag{a1} |
− | $K$ | + | \mathcal{E} ( \rho ) : = |
− | nuclei of charges | + | \frac { 3 } { 5 } \gamma \int _ { \mathbf R ^ { 3 } } \rho ( x ) ^ { 5 / 3 } d x - \int _ { \mathbf R ^ { 3 } } V ( x ) \rho ( x ) d x |
− | $Z_i > 0$ | + | +\frac { 1 } { 2 } \int _ { {\bf R} ^ { 3 } } \int _ { {\bf R} ^ { 3 } } \frac { \rho ( x ) \rho ( y ) } { | x - y | } d x d y + U |
− | and locations | + | \end{equation} |
− | $R_{i} \in \mathbf{R} ^ { 3 }$ | ||
− | ($i = 1 , \ldots , K$), | ||
− | it is | ||
− | \begin{equation} \tag{a1} \mathcal{E} ( \rho ) : = | ||
− | |||
− | |||
in suitable units. Here, | in suitable units. Here, | ||
\begin{equation*} V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }, \end{equation*} | \begin{equation*} V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }, \end{equation*} | ||
− | \begin{equation*} U = \sum _ { 1 \leq i | + | \begin{equation*} U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }, \end{equation*} |
and | and | ||
$\gamma = ( 3 \pi ^ { 2 } ) ^ { 2 / 3 }$. | $\gamma = ( 3 \pi ^ { 2 } ) ^ { 2 / 3 }$. | ||
− | The constraint on | + | The constraint on $\rho$ is $\rho ( x ) \geq 0$ and $\int _ { \mathbf{R} ^ { 3 } } \rho = N$. |
− | $\rho$ | ||
− | is | ||
− | $\rho ( x ) \geq 0$ | ||
− | and | ||
− | $\int _ { \mathbf{R} ^ { 3 } } \rho = N$. | ||
− | The functional | + | The functional $\rho \rightarrow \mathcal{E} ( \rho )$ is convex (cf. also [[Convex function (of a real variable)|Convex function (of a real variable)]]). |
− | $\rho \rightarrow \mathcal{E} ( \rho )$ | ||
− | is convex (cf. also | ||
− | [[Convex function (of a real variable)|Convex function (of a real variable)]]). | ||
The justification for this functional is this: | The justification for this functional is this: | ||
− | The first term is roughly the minimum quantum-mechanical | + | The first term is roughly the minimum quantum-mechanical kinetic energy of $N$ electrons needed to produce an electron density $\rho$. |
− | kinetic energy of | ||
− | $N$ | ||
− | electrons needed to produce an electron density | ||
− | $\rho$. | ||
− | The second term is the attractive interaction of the | + | The second term is the attractive interaction of the $N$ electrons with the $K$ nuclei, via the Coulomb potential $V$. |
− | $N$ | ||
− | electrons with the | ||
− | $K$ | ||
− | nuclei, via the | ||
− | Coulomb potential | ||
− | $V$. | ||
The third is approximately the electron-electron repulsive | The third is approximately the electron-electron repulsive | ||
energy. | energy. | ||
− | $U$ | + | $U$ is the nuclear-nuclear repulsion and is an important constant. |
− | is the nuclear-nuclear repulsion and is an important constant. | ||
− | The | + | The Thomas–Fermi energy is defined to be |
− | Thomas–Fermi energy | ||
− | is defined to be | ||
\begin{equation*} E ^ { \text{TF} } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}, \end{equation*} | \begin{equation*} E ^ { \text{TF} } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}, \end{equation*} | ||
− | i.e., the Thomas–Fermi energy and density are obtained by minimizing | + | i.e., the Thomas–Fermi energy and density are obtained by minimizing ${\cal E} ( \rho )$ with $\rho \in L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ and $\int \rho = N$. |
− | ${\cal E} ( \rho )$ | ||
− | with | ||
− | $\rho \in L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ | ||
− | and | ||
− | $\int \rho = N$. | ||
− | The | + | The [[Euler–Lagrange equation|Euler–Lagrange equation]], in this case called the Thomas–Fermi equation, is |
− | [[Euler–Lagrange equation|Euler–Lagrange equation]], | ||
− | in this case called the | ||
− | Thomas–Fermi equation, | ||
− | is | ||
\begin{equation} \tag{a2} \gamma \rho ( x ) ^ { 2 / 3 } = [ \Phi ( x ) - \mu ]_+ , \end{equation} | \begin{equation} \tag{a2} \gamma \rho ( x ) ^ { 2 / 3 } = [ \Phi ( x ) - \mu ]_+ , \end{equation} | ||
− | where | + | where $[ a ] + = \operatorname { max } \{ 0 , a \}$, $\mu$ is some constant (a Lagrange multiplier; cf. [[Lagrange multipliers|Lagrange multipliers]]) and $\Phi$ is the Thomas–Fermi potential: |
− | $[ a ] + = \operatorname { max } \{ 0 , a \}$, | + | |
− | $\mu$ | ||
− | is some constant | ||
− | (a | ||
− | Lagrange multiplier; cf. | ||
− | [[Lagrange multipliers|Lagrange multipliers]]) | ||
− | and | ||
− | $\Phi$ | ||
− | is the | ||
− | Thomas–Fermi potential: | ||
\begin{equation} \tag{a3} \Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y. \end{equation} | \begin{equation} \tag{a3} \Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y. \end{equation} | ||
− | The following essential mathematical facts about the | + | The following essential mathematical facts about the Thomas–Fermi equation were established by E.H. Lieb and B. Simon [[#References|[a7]]] (cf. also [[#References|[a3]]]): |
− | Thomas–Fermi equation were | ||
− | established by | ||
− | E.H. Lieb | ||
− | and | ||
− | B. Simon | ||
− | [[#References|[a7]]] | ||
− | (cf. also | ||
− | [[#References|[a3]]]): | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ${\cal E} ( \rho )$ | + | 1) There is a density $\rho _ { N } ^ { \operatorname {TF} }$ that minimizes ${\cal E} ( \rho )$ if and only if $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$. This $\rho _ { N } ^ { \operatorname {TF} }$ is unique and it satisfies the Thomas–Fermi equation (a2) for some $\mu \geq 0$. Every positive solution, $\rho$, of (a2) is a minimizer of (a1) for $N = \int \rho$. If $N > Z$, then $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ and any minimizing sequence converges weakly in $L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ to $\rho ^ { \operatorname {TF} } _{ Z }$. |
− | + | 2) $\Phi ( x ) \geq 0$ for all $x$. (This need not be so for the real Schrödinger $\rho$.) | |
− | + | 3) $\mu = \mu ( N )$ is a strictly monotonically decreasing function of $N$ and $\mu ( Z ) = 0$ (the neutral case). $\mu$ is the chemical potential, namely \begin{equation*} \mu ( N ) = - \frac { \partial E ^ { \text{TF} } ( N ) } { \partial N }. \end{equation*} $E ^ { \text{TF} } ( N )$ is a strictly convex, decreasing function of $N$ for $N \leq Z$ and $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ for $N \geq Z$. If $N < Z$, $\rho _ { N } ^ { \operatorname {TF} }$ has compact support. When $N = Z$, (a2) becomes $\gamma \rho ^ { 2 / 3 } = \Phi$. By applying the [[Laplace operator|Laplace operator]] $\Delta$ to both sides, one obtains | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | 3) | ||
− | |||
− | $\mu = \mu ( N )$ | ||
− | |||
− | is a strictly monotonically decreasing function of | ||
− | |||
− | $N$ | ||
− | |||
− | and | ||
− | |||
− | $\mu ( Z ) = 0$ | ||
− | |||
− | (the | ||
− | |||
− | neutral case). | ||
− | |||
− | $\mu$ | ||
− | |||
− | is the | ||
− | |||
− | chemical potential, | ||
− | |||
− | namely | ||
− | |||
− | \begin{equation*} \mu ( N ) = - \frac { \partial E ^ { \text{TF} } ( N ) } { \partial N }. \end{equation*} | ||
− | |||
− | $E ^ { \text{TF} } ( N )$ | ||
− | |||
− | is a strictly convex, decreasing function of | ||
− | |||
− | $N$ | ||
− | |||
− | for | ||
− | |||
− | $N \leq Z$ | ||
− | |||
− | and | ||
− | |||
− | $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ | ||
− | |||
− | for | ||
− | |||
− | $N \geq Z$. | ||
− | |||
− | If | ||
− | |||
− | $N | ||
− | |||
− | $\rho _ { N } ^ { \operatorname {TF} }$ | ||
− | |||
− | has compact support. | ||
− | |||
− | When | ||
− | |||
− | $N = Z$, | ||
− | |||
− | (a2) | ||
− | |||
− | becomes | ||
− | |||
− | $\gamma \rho ^ { 2 / 3 } = \Phi$. | ||
− | |||
− | By applying the | ||
− | |||
− | [[Laplace operator|Laplace operator]] | ||
− | |||
− | $\Delta$ | ||
− | |||
− | to both sides, one obtains | ||
\begin{equation*} - \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } ), \end{equation*} | \begin{equation*} - \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } ), \end{equation*} | ||
− | which is the form in which the Thomas–Fermi | + | which is the form in which the Thomas–Fermi equation is usually stated (but it is valid only for $N = Z$). An important property of the solution is Teller's theorem [[#References|[a4]]] (proved rigorously in [[#References|[a7]]]), which implies that the Thomas–Fermi molecule is always unstable, i.e., for each $N \leq Z$ there are $K$ numbers $N _ { j } \in ( 0 , Z _ { j } )$ with $\sum _ { j } N _ { j } = N$ such that |
− | |||
− | equation is usually stated (but it | ||
− | |||
− | is valid only for | ||
− | |||
− | $N = Z$). | ||
− | |||
− | An important property of the solution is | ||
− | |||
− | Teller's theorem | ||
− | |||
− | [[#References|[a4]]] | ||
− | |||
− | (proved rigorously in | ||
− | |||
− | [[#References|[a7]]]), | ||
− | |||
− | which implies that the | ||
− | |||
− | Thomas–Fermi molecule | ||
− | |||
− | is always unstable, i.e., for each | ||
− | |||
− | $N \leq Z$ | ||
− | |||
− | there are | ||
− | |||
− | $K$ | ||
− | |||
− | numbers | ||
− | |||
− | $N _ { j } \in ( 0 , Z _ { j } )$ | ||
− | |||
− | with | ||
− | |||
− | $\sum _ { j } N _ { j } = N$ | ||
− | |||
− | such that | ||
\begin{equation} \tag{a4} E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ), \end{equation} | \begin{equation} \tag{a4} E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ), \end{equation} | ||
− | where | + | where $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ is the Thomas–Fermi energy with $K = 1$, $Z = Z_j$ and $N = N_{j}$. The presence of $U$ in (a1) is crucial for this result. |
− | + | The inequality is strict. Not only does $E ^ { \text{TF} }$ decrease when the nuclei are pulled infinitely far apart (which is what (a4) says) but any dilation of the nuclear coordinates ($R _ { j } \rightarrow \text{l}R _ { j }$, $\text{l} > 1$) will decrease $E ^ { \text{TF} }$ in the neutral case (positivity of the pressure) [[#References|[a3]]], [[#References|[a1]]]. | |
− | $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ | + | This theorem plays an important role in the stability of matter. |
+ | An important question concerns the connection between $E ^ { \text{TF} } ( N )$ and $E ^ { \text{Q} } ( N )$, the ground state energy (i.e., the infimum of the spectrum) of the Schrödinger operator, $H$, it was meant to approximate. | ||
− | + | \begin{equation*} H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U, \end{equation*} | |
− | + | which acts on the anti-symmetric functions $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ (i.e., functions of space and spin). It used to be believed that $E ^ { \text{TF} }$ is asymptotically exact as $N \rightarrow \infty$, but this is not quite right; $Z \rightarrow \infty$ is also needed. Lieb and Simon [[#References|[a7]]] proved that if one fixes $K$ and $Z _ { j } / Z$ and sets $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$, with fixed $R _ { j } ^ { 0 } \in \mathbf{R} ^ { 3 }$, and sets $N = \lambda Z$, with $0 \leq \lambda < 1$, then | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | which acts on the | ||
− | |||
− | anti-symmetric functions | ||
− | |||
− | $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ | ||
− | |||
− | (i.e., functions of space and spin). It used to be believed that | ||
− | |||
− | $E ^ { \text{TF} }$ | ||
− | |||
− | is asymptotically exact as | ||
− | |||
− | $N \rightarrow \infty$, | ||
− | |||
− | but this is not quite right; | ||
− | |||
− | $Z \rightarrow \infty$ | ||
− | |||
− | is also needed. | ||
− | |||
− | Lieb | ||
− | |||
− | and | ||
− | |||
− | Simon | ||
− | |||
− | [[#References|[a7]]] | ||
− | |||
− | proved that if one fixes | ||
− | |||
− | $K$ | ||
− | |||
− | and | ||
− | |||
− | $Z _ { j } / Z$ | ||
− | |||
− | and sets | ||
− | |||
− | $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$, | ||
− | |||
− | with fixed | ||
− | |||
− | $R _ { j } ^ { 0 } \in \mathbf{R} ^ { 3 }$, | ||
− | |||
− | and sets | ||
− | |||
− | $N = \lambda Z$, | ||
− | |||
− | with | ||
− | |||
− | $0 \leq \lambda | ||
− | |||
− | then | ||
\begin{equation} \tag{a5} \operatorname { lim } _ { Z \rightarrow \infty } \frac { E ^ { \text{TF} } ( \lambda Z ) } { E ^ { \text{Q} } ( \lambda Z ) } = 1. \end{equation} | \begin{equation} \tag{a5} \operatorname { lim } _ { Z \rightarrow \infty } \frac { E ^ { \text{TF} } ( \lambda Z ) } { E ^ { \text{Q} } ( \lambda Z ) } = 1. \end{equation} | ||
− | In particular, a simple change of variables shows that | + | In particular, a simple change of variables shows that $E _ { \text{atom} } ^ { \text{TF} } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { \text{atom} } ^ { \text{TF} } ( \lambda , 1 )$ and hence the true energy of a large atom is asymptotically proportional to $Z ^ { 7 / 3 }$. |
− | |||
− | $E _ { \text{atom} } ^ { \text{TF} } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { \text{atom} } ^ { \text{TF} } ( \lambda , 1 )$ | ||
− | |||
− | and hence the true energy of a large atom is asymptotically | ||
− | |||
− | proportional to | ||
− | |||
− | $Z ^ { 7 / 3 }$. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | which is spherically symmetric, scales as | + | Likewise, there is a well-defined sense in which the quantum-mechanical density converges to $\rho _ { N } ^ { \operatorname {TF} }$ (cf. [[#References|[a7]]]). The Thomas–Fermi density for an atom located at $R = 0$, which is spherically symmetric, scales as |
\begin{equation*} \rho _ { \text { atom } } ^ { \text {TF} } ( x ; N = \lambda Z , Z ) = \end{equation*} | \begin{equation*} \rho _ { \text { atom } } ^ { \text {TF} } ( x ; N = \lambda Z , Z ) = \end{equation*} | ||
Line 475: | Line 82: | ||
\begin{equation*} = Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ). \end{equation*} | \begin{equation*} = Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ). \end{equation*} | ||
− | Thus, a large atom (i.e., large | + | Thus, a large atom (i.e., large $Z$) is smaller than a $Z = 1$ atom by a factor $Z ^ { - 1 / 3 }$ in radius. Despite this seeming paradox, Thomas–Fermi theory gives the correct electron density in a real atom (so far as the bulk of the electrons is concerned) as $Z \rightarrow \infty$. |
− | |||
− | $Z$) | ||
− | |||
− | is smaller than a | ||
− | |||
− | $Z = 1$ | ||
− | |||
− | atom by a factor | ||
− | |||
− | $Z ^ { - 1 / 3 }$ | ||
− | |||
− | in radius. Despite this seeming paradox, Thomas–Fermi | ||
− | |||
− | theory gives the correct | ||
− | |||
− | electron density in a real atom (so far as the bulk of the | ||
− | |||
− | electrons is concerned) as | ||
− | |||
− | $Z \rightarrow \infty$. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | $ | + | Another important fact is the large-$| x |$ asymptotics of $\rho _ { \text { atom } } ^ { \text{TF} }$ for a neutral atom. As $| x | \rightarrow \infty$, \begin{equation*} \rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } \left( \frac { 3 } { \pi } \right) ^ { 3 } | x | ^ { - 6 }, \end{equation*} independent of $Z$. |
− | + | Again, this behaviour agrees with quantum mechanics — on a length scale $Z ^ { - 1 / 3 }$, which is where the bulk of the electrons is to be found. | |
− | in | + | In light of the limit theorem (a5), Teller's theorem can be understood as saying that, as $Z \rightarrow \infty$, the quantum-mechanical binding energy of a molecule is of lower order in $Z$ than the total ground state energy. Thus, Teller's theorem is not a defect of Thomas–Fermi theory (although it is sometimes interpreted that way) but an important statement about the true quantum-mechanical situation. For finite $Z$ one can show, using the [[Lieb–Thirring inequalities|Lieb–Thirring inequalities]] [[#References|[a12]]] and the Lieb–Oxford inequality [[#References|[a6]]], that $E ^ { \text{TF} } ( N )$, with a modified $\gamma$, gives a lower bound to $E ^ { \text{Q} } ( N )$. |
− | + | Several "improvements" to Thomas–Fermi theory have been proposed, but none have a fundamental significance in the sense of being "exact" in the $Z \rightarrow \infty$ limit. The von Weizsäcker correction consists in adding a term \begin{equation*} \text{(const)} \int _ { {\bf R} ^ { 3 } } | \nabla \sqrt { \rho ( x ) } | ^ { 2 } d x \end{equation*} to ${\cal E} ( \rho )$. This preserves the convexity of ${\cal E} ( \rho )$ and adds $(\text{const})Z ^ { 2 }$ to $E ^ { \text{TF} } ( N )$ when $Z$ is large. It also has the effect that the range of $N$ for which there is a minimizing $\rho$ is extend from $[ 0 , Z ]$ to $[ 0 , Z + ( \text { const } ) K ]$. Another correction, the Dirac exchange energy, is to add \begin{equation*} - ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x \end{equation*} to ${\cal E} ( \rho )$. This spoils the convexity but not the range $[ 0 , Z ]$ for which a minimizing $\rho$ exists, cf. [[#References|[a7]]] for both of these corrections. When a uniform external magnetic field $B$ is present, the operator $- \Delta$ in $H$ is replaced by \begin{equation*} | i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x ), \end{equation*} with $\operatorname{curl}A = B$ and $\sigma$ denoting the Pauli spin matrices (cf. also [[Pauli matrices|Pauli matrices]]). | |
− | + | This leads to a modified Thomas–Fermi theory that is asymptotically exact as $Z \rightarrow \infty$, but the theory depends on the manner in which $B$ varies with $Z$. | |
− | + | There are five distinct regimes and theories: $B \ll Z ^ { 4 / 3 }$, $B \sim Z ^ { 4 / 3 }$, $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$, $B \sim Z ^ { 3 }$, and $B \gg Z ^ { 3 }$. | |
− | + | These theories [[#References|[a8]]], [[#References|[a9]]] are relevant for neutron stars. | |
− | + | Another class of Thomas–Fermi theories with magnetic fields is relevant for electrons confined to two-dimensional geometries (quantum dots) [[#References|[a10]]]. | |
− | + | In this case there are three regimes. | |
− | + | A convenient review is [[#References|[a11]]]. | |
− | + | Still another modification of Thomas–Fermi theory is its extension from a theory of the ground states of atoms and molecules (which corresponds to zero temperature) to a theory of positive temperature states of large systems such as stars (cf. [[#References|[a5]]], [[#References|[a14]]]). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Several | ||
− | |||
− | "improvements" | ||
− | |||
− | to Thomas–Fermi theory have been proposed, but none have a | ||
− | |||
− | fundamental significance in the sense of being | ||
− | |||
− | "exact" | ||
− | |||
− | in the | ||
− | |||
− | $Z \rightarrow \infty$ | ||
− | |||
− | limit. The | ||
− | |||
− | von Weizsäcker correction | ||
− | |||
− | consists in adding a term | ||
− | |||
− | \begin{equation*} \text{(const)} \int _ { {\bf R} ^ { 3 } } | \nabla \sqrt { \rho ( x ) } | ^ { 2 } d x \end{equation*} | ||
− | |||
− | to | ||
− | |||
− | ${\cal E} ( \rho )$. | ||
− | |||
− | This preserves the convexity of | ||
− | |||
− | ${\cal E} ( \rho )$ | ||
− | |||
− | and adds | ||
− | |||
− | $(\text{const})Z ^ { 2 }$ | ||
− | |||
− | to | ||
− | |||
− | $E ^ { \text{TF} } ( N )$ | ||
− | |||
− | when | ||
− | |||
− | $Z$ | ||
− | |||
− | is large. It also has the effect that the range of | ||
− | |||
− | $N$ | ||
− | |||
− | for which there is a minimizing | ||
− | |||
− | $\rho$ | ||
− | |||
− | is extend from | ||
− | |||
− | $[ 0 , Z ]$ | ||
− | |||
− | to | ||
− | |||
− | $[ 0 , Z + ( \text { const } ) K ]$. | ||
− | |||
− | Another correction, the | ||
− | |||
− | Dirac exchange energy, | ||
− | |||
− | is to add | ||
− | |||
− | \begin{equation*} - ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x \end{equation*} | ||
− | |||
− | to | ||
− | |||
− | ${\cal E} ( \rho )$. | ||
− | |||
− | This spoils the convexity but not the range | ||
− | |||
− | $[ 0 , Z ]$ | ||
− | |||
− | for which a | ||
− | |||
− | minimizing | ||
− | |||
− | $\rho$ | ||
− | |||
− | exists, cf. | ||
− | |||
− | [[#References|[a7]]] | ||
− | |||
− | for both of these corrections. | ||
− | |||
− | When a uniform external magnetic field | ||
− | |||
− | $B$ | ||
− | |||
− | is present, the operator | ||
− | |||
− | $- \Delta$ | ||
− | |||
− | in | ||
− | |||
− | $H$ | ||
− | |||
− | is replaced by | ||
− | |||
− | \begin{equation*} | i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x ), \end{equation*} | ||
− | |||
− | with | ||
− | |||
− | $\operatorname{curl}A = B$ | ||
− | |||
− | and | ||
− | |||
− | $\sigma$ | ||
− | |||
− | denoting the Pauli spin matrices (cf. also | ||
− | |||
− | [[Pauli matrices|Pauli matrices]]). | ||
− | |||
− | This leads to a modified Thomas–Fermi theory | ||
− | |||
− | that is asymptotically exact as | ||
− | |||
− | $Z \rightarrow \infty$, | ||
− | |||
− | but the theory depends on the manner in which | ||
− | |||
− | $B$ | ||
− | |||
− | varies with | ||
− | |||
− | $Z$. | ||
− | |||
− | There are five distinct regimes and theories: | ||
− | |||
− | $B \ll Z ^ { 4 / 3 }$, | ||
− | |||
− | $B \sim Z ^ { 4 / 3 }$, | ||
− | |||
− | $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$, | ||
− | |||
− | $B \sim Z ^ { 3 }$, | ||
− | |||
− | and | ||
− | |||
− | $B \gg Z ^ { 3 }$. | ||
− | |||
− | These | ||
− | |||
− | theories | ||
− | |||
− | [[#References|[a8]]], | ||
− | |||
− | [[#References|[a9]]] | ||
− | |||
− | are relevant for | ||
− | |||
− | neutron stars. | ||
− | |||
− | Another class of Thomas–Fermi theories with | ||
− | |||
− | magnetic fields is relevant for electrons confined to | ||
− | |||
− | two-dimensional geometries | ||
− | |||
− | (quantum dots) | ||
− | |||
− | [[#References|[a10]]]. | ||
− | |||
− | In this case there are three regimes. A convenient review | ||
− | |||
− | is | ||
− | |||
− | [[#References|[a11]]]. | ||
− | |||
− | Still another modification of Thomas–Fermi theory | ||
− | |||
− | is its extension from a | ||
− | |||
− | theory of the ground states of atoms and molecules (which corresponds | ||
− | |||
− | to zero temperature) to a theory of positive temperature states of | ||
− | |||
− | large systems such as stars | ||
− | |||
− | (cf. | ||
− | |||
− | [[#References|[a5]]], | ||
− | |||
− | [[#References|[a14]]]). | ||
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> | + | <table> |
− | + | <tr><td valign="top">[a1]</td> <td valign="top"> R. Benguria, E.H. Lieb, "The positivity of the pressure in Thomas–Fermi theory" ''Comm. Math. Phys.'' , '''63''' (1978) pp. 193–218 ((Errata: 71 (1980), 94))</td></tr> | |
− | R. Benguria, | + | <tr><td valign="top">[a2]</td> <td valign="top"> E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell'atome" ''Rend. Accad. Naz. Lincei'' , '''6''' (1927) pp. 602–607</td></tr> |
− | + | <tr><td valign="top">[a3]</td> <td valign="top"> E.H. Lieb, "Thomas–Fermi and related theories of atoms and molecules" ''Rev. Mod. Phys.'' , '''53''' (1981) pp. 603–641 ((Errata: 54 (1982), 311))</td></tr> | |
− | E.H. Lieb, | + | <tr><td valign="top">[a4]</td> <td valign="top"> E. Teller, "On the stability of molecules in Thomas–Fermi theory" ''Rev. Mod. Phys.'' , '''34''' (1962) pp. 627–631</td></tr> |
− | + | <tr><td valign="top">[a5]</td> <td valign="top"> J. Messer, "Temperature dependent Thomas–Fermi theory" , ''Lecture Notes Physics'' , '''147''' , Springer (1981)</td></tr> | |
− | "The positivity of the pressure in Thomas–Fermi theory" | + | <tr><td valign="top">[a6]</td> <td valign="top"> E.H. Lieb, S. Oxford, "An improved lower bound on the indirect Coulomb energy" ''Internat. J. Quant. Chem.'' , '''19''' (1981) pp. 427–439</td></tr> |
− | + | <tr><td valign="top">[a7]</td> <td valign="top"> E.H. Lieb, B. Simon, "The Thomas–Fermi theory of atoms, molecules and solids" ''Adv. Math.'' , '''23''' (1977) pp. 22–116</td></tr> | |
− | ''Comm. Math. Phys.'' | + | <tr><td valign="top">[a8]</td> <td valign="top"> E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of heavy atoms in high magnetic fields: I. lowest Landau band region" ''Commun. Pure Appl. Math.'' , '''47''' (1994) pp. 513–591</td></tr> |
− | + | <tr><td valign="top">[a9]</td> <td valign="top"> E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of heavy atoms in high magnetic fields: II. semiclassical regions" ''Comm. Math. Phys.'' , '''161''' (1994) pp. 77–124</td></tr>' | |
− | , '''63''' | + | <tr><td valign="top">[a10]</td> <td valign="top"> E.H. Lieb, J.P. Solovej, J. Yngvason, "Ground states of large quantum dots in magnetic fields" ''Phys. Rev. B'' , '''51''' (1995) pp. 10646–10665</td></tr> |
− | + | <tr><td valign="top">[a11]</td> <td valign="top"> E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of natural and artificial atoms in strong magnetic fields" W. Thirring (ed.) , ''The stability of matter: from atoms to stars, selecta of E.H. Lieb'' , Springer (1997) pp. 145–167 (Edition: Second)</td></tr> | |
− | (1978) | + | <tr><td valign="top">[a12]</td> <td valign="top"> E.H. Lieb, W. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" E. Lieb (ed.) B. Simon (ed.) A. Wightman (ed.) , ''Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann'' , Princeton Univ. Press (1976) pp. 269–303 ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977))</td></tr> |
− | + | <tr><td valign="top">[a13]</td> <td valign="top"> L.H. Thomas, "The calculation of atomic fields" ''Proc. Cambridge Philos. Soc.'' , '''23''' (1927) pp. 542–548</td></tr> | |
− | pp. 193–218 | + | <tr><td valign="top">[a14]</td> <td valign="top"> W. Thirring, "A course in mathematical physics" , '''4''' , Springer (1983) pp. 209–277</td></tr> |
− | + | </table> | |
− | ((Errata: 71 (1980), 94))</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> | ||
− | |||
− | E. Fermi, | ||
− | |||
− | "Un metodo statistico per la determinazione di alcune priorieta dell'atome" | ||
− | |||
− | ''Rend. Accad. Naz. Lincei'' | ||
− | |||
− | , '''6''' | ||
− | |||
− | (1927) | ||
− | |||
− | pp. 602–607</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | "Thomas–Fermi and related theories of atoms and molecules" | ||
− | |||
− | ''Rev. Mod. Phys.'' | ||
− | |||
− | , '''53''' | ||
− | |||
− | (1981) | ||
− | |||
− | pp. 603–641 | ||
− | |||
− | ((Errata: 54 (1982), 311))</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> | ||
− | |||
− | E. Teller, | ||
− | |||
− | "On the stability of molecules in Thomas–Fermi theory" | ||
− | |||
− | ''Rev. Mod. Phys.'' | ||
− | |||
− | , '''34''' | ||
− | |||
− | (1962) | ||
− | |||
− | pp. 627–631</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> | ||
− | |||
− | J. Messer, | ||
− | |||
− | "Temperature dependent Thomas–Fermi theory" | ||
− | |||
− | , ''Lecture Notes Physics'' | ||
− | |||
− | , '''147''' | ||
− | |||
− | , Springer | ||
− | |||
− | (1981)</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | S. Oxford, | ||
− | |||
− | "An improved lower bound on the indirect Coulomb energy" | ||
− | |||
− | ''Internat. J. Quant. Chem.'' | ||
− | |||
− | , '''19''' | ||
− | |||
− | (1981) | ||
− | |||
− | pp. 427–439</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | B. Simon, | ||
− | |||
− | "The Thomas–Fermi theory of atoms, molecules and solids" | ||
− | |||
− | ''Adv. Math.'' | ||
− | |||
− | , '''23''' | ||
− | |||
− | (1977) | ||
− | |||
− | pp. 22–116</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | J.P. Solovej, | ||
− | |||
− | J. Yngvason, | ||
− | |||
− | "Asymptotics of heavy atoms in high magnetic fields: I. lowest Landau band region" | ||
− | |||
− | ''Commun. Pure Appl. Math.'' | ||
− | |||
− | , '''47''' | ||
− | |||
− | (1994) | ||
− | |||
− | pp. 513–591</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | J.P. Solovej, | ||
− | |||
− | J. Yngvason, | ||
− | |||
− | "Asymptotics of heavy atoms in high magnetic fields: II. semiclassical regions" | ||
− | |||
− | ''Comm. Math. Phys.'' | ||
− | |||
− | , '''161''' | ||
− | |||
− | (1994) | ||
− | |||
− | pp. 77–124</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | J.P. Solovej, | ||
− | |||
− | J. Yngvason, | ||
− | |||
− | "Ground states of large quantum dots in magnetic fields" | ||
− | |||
− | ''Phys. Rev. B'' | ||
− | |||
− | , '''51''' | ||
− | |||
− | (1995) | ||
− | |||
− | pp. 10646–10665</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | J.P. Solovej, | ||
− | |||
− | J. Yngvason, | ||
− | |||
− | "Asymptotics of natural and artificial atoms in strong magnetic fields" | ||
− | |||
− | W. Thirring (ed.) | ||
− | |||
− | , ''The stability of matter: from atoms to stars, selecta of E.H. Lieb'' | ||
− | |||
− | , Springer | ||
− | |||
− | (1997) | ||
− | |||
− | pp. 145–167 | ||
− | |||
− | (Edition: Second)</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> | ||
− | |||
− | E.H. Lieb, | ||
− | |||
− | W. Thirring, | ||
− | |||
− | "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" | ||
− | |||
− | E. Lieb (ed.) | ||
− | |||
− | B. Simon (ed.) | ||
− | |||
− | A. Wightman (ed.) | ||
− | |||
− | , ''Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann'' | ||
− | |||
− | , Princeton Univ. Press | ||
− | |||
− | (1976) | ||
− | |||
− | pp. 269–303 | ||
− | |||
− | ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977))</td></tr><tr><td valign="top">[a13]</td> <td valign="top"> | ||
− | |||
− | L.H. Thomas, | ||
− | |||
− | "The calculation of atomic fields" | ||
− | |||
− | ''Proc. Cambridge Philos. Soc.'' | ||
− | |||
− | , '''23''' | ||
− | |||
− | (1927) | ||
− | |||
− | pp. 542–548</td></tr><tr><td valign="top">[a14]</td> <td valign="top"> | ||
− | |||
− | W. Thirring, | ||
− | |||
− | "A course in mathematical physics" | ||
− | |||
− | , '''4''' | ||
− | |||
− | , Springer | ||
− | |||
− | (1983) | ||
− | |||
− | pp. 209–277</td></tr></table> | ||
''Elliott H. Lieb'' | ''Elliott H. Lieb'' | ||
Copyright to this article is held by Elliott Lieb. | Copyright to this article is held by Elliott Lieb. |
Latest revision as of 23:54, 14 February 2024
Fermi–Thomas theory
Sometimes called the "statistical theory" , it was invented by L.H. Thomas [a13] and E. Fermi [a2], shortly after E. Schrödinger invented his quantum-mechanical wave equation, in order to approximately describe the electron density, $\rho ( x )$, $x \in \mathbf{R} ^ { 3 }$, and the ground state energy, $E ( N )$ for a large atom or molecule with a large number, $N$, of electrons. Schrödinger's equation, which would give the exact density and energy, cannot be easily handled when $N$ is large (cf. also Schrödinger equation).
A starting point for the theory is the Thomas–Fermi energy functional. For a molecule with $K$ nuclei of charges $Z_i > 0$ and locations $R_{i} \in \mathbf{R} ^ { 3 }$ ($i = 1 , \ldots , K$), it is \begin{equation} \tag{a1} \mathcal{E} ( \rho ) : = \frac { 3 } { 5 } \gamma \int _ { \mathbf R ^ { 3 } } \rho ( x ) ^ { 5 / 3 } d x - \int _ { \mathbf R ^ { 3 } } V ( x ) \rho ( x ) d x +\frac { 1 } { 2 } \int _ { {\bf R} ^ { 3 } } \int _ { {\bf R} ^ { 3 } } \frac { \rho ( x ) \rho ( y ) } { | x - y | } d x d y + U \end{equation} in suitable units. Here, \begin{equation*} V ( x ) = \sum _ { j = 1 } ^ { K } Z _ { j } | x - r _ { j } | ^ { - 1 }, \end{equation*} \begin{equation*} U = \sum _ { 1 \leq i < j \leq K } Z _ { i } Z _ { j } | R _ { i } - R _ { j } | ^ { - 1 }, \end{equation*} and $\gamma = ( 3 \pi ^ { 2 } ) ^ { 2 / 3 }$.
The constraint on $\rho$ is $\rho ( x ) \geq 0$ and $\int _ { \mathbf{R} ^ { 3 } } \rho = N$.
The functional $\rho \rightarrow \mathcal{E} ( \rho )$ is convex (cf. also Convex function (of a real variable)).
The justification for this functional is this: The first term is roughly the minimum quantum-mechanical kinetic energy of $N$ electrons needed to produce an electron density $\rho$.
The second term is the attractive interaction of the $N$ electrons with the $K$ nuclei, via the Coulomb potential $V$.
The third is approximately the electron-electron repulsive energy. $U$ is the nuclear-nuclear repulsion and is an important constant.
The Thomas–Fermi energy is defined to be \begin{equation*} E ^ { \text{TF} } ( N ) = \operatorname { inf } \{ \mathcal{E} ( \rho ) : \rho \in L ^ { 5 / 3 } , \int \rho = N , \rho \geq 0 \}, \end{equation*} i.e., the Thomas–Fermi energy and density are obtained by minimizing ${\cal E} ( \rho )$ with $\rho \in L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ and $\int \rho = N$.
The Euler–Lagrange equation, in this case called the Thomas–Fermi equation, is \begin{equation} \tag{a2} \gamma \rho ( x ) ^ { 2 / 3 } = [ \Phi ( x ) - \mu ]_+ , \end{equation} where $[ a ] + = \operatorname { max } \{ 0 , a \}$, $\mu$ is some constant (a Lagrange multiplier; cf. Lagrange multipliers) and $\Phi$ is the Thomas–Fermi potential:
\begin{equation} \tag{a3} \Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y. \end{equation}
The following essential mathematical facts about the Thomas–Fermi equation were established by E.H. Lieb and B. Simon [a7] (cf. also [a3]):
1) There is a density $\rho _ { N } ^ { \operatorname {TF} }$ that minimizes ${\cal E} ( \rho )$ if and only if $N \leq Z : = \sum _ { j = 1 } ^ { K } Z _ { j }$. This $\rho _ { N } ^ { \operatorname {TF} }$ is unique and it satisfies the Thomas–Fermi equation (a2) for some $\mu \geq 0$. Every positive solution, $\rho$, of (a2) is a minimizer of (a1) for $N = \int \rho$. If $N > Z$, then $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ and any minimizing sequence converges weakly in $L ^ { 5 / 3 } ( \mathbf{R} ^ { 3 } )$ to $\rho ^ { \operatorname {TF} } _{ Z }$.
2) $\Phi ( x ) \geq 0$ for all $x$. (This need not be so for the real Schrödinger $\rho$.)
3) $\mu = \mu ( N )$ is a strictly monotonically decreasing function of $N$ and $\mu ( Z ) = 0$ (the neutral case). $\mu$ is the chemical potential, namely \begin{equation*} \mu ( N ) = - \frac { \partial E ^ { \text{TF} } ( N ) } { \partial N }. \end{equation*} $E ^ { \text{TF} } ( N )$ is a strictly convex, decreasing function of $N$ for $N \leq Z$ and $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ for $N \geq Z$. If $N < Z$, $\rho _ { N } ^ { \operatorname {TF} }$ has compact support. When $N = Z$, (a2) becomes $\gamma \rho ^ { 2 / 3 } = \Phi$. By applying the Laplace operator $\Delta$ to both sides, one obtains
\begin{equation*} - \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } ), \end{equation*}
which is the form in which the Thomas–Fermi equation is usually stated (but it is valid only for $N = Z$). An important property of the solution is Teller's theorem [a4] (proved rigorously in [a7]), which implies that the Thomas–Fermi molecule is always unstable, i.e., for each $N \leq Z$ there are $K$ numbers $N _ { j } \in ( 0 , Z _ { j } )$ with $\sum _ { j } N _ { j } = N$ such that
\begin{equation} \tag{a4} E ^ { \operatorname{TF} } ( N ) > \sum _ { j = 1 } ^ { K } E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } ), \end{equation}
where $E _ { \operatorname{atom} } ^ { \operatorname{TF} } ( N _ { j } , Z _ { j } )$ is the Thomas–Fermi energy with $K = 1$, $Z = Z_j$ and $N = N_{j}$. The presence of $U$ in (a1) is crucial for this result. The inequality is strict. Not only does $E ^ { \text{TF} }$ decrease when the nuclei are pulled infinitely far apart (which is what (a4) says) but any dilation of the nuclear coordinates ($R _ { j } \rightarrow \text{l}R _ { j }$, $\text{l} > 1$) will decrease $E ^ { \text{TF} }$ in the neutral case (positivity of the pressure) [a3], [a1]. This theorem plays an important role in the stability of matter. An important question concerns the connection between $E ^ { \text{TF} } ( N )$ and $E ^ { \text{Q} } ( N )$, the ground state energy (i.e., the infimum of the spectrum) of the Schrödinger operator, $H$, it was meant to approximate.
\begin{equation*} H = - \sum _ { i = 1 } ^ { N } [ \Delta _ { i } + V ( x _ { i } ) ] + \sum _ { 1 \leq i < j \leq N } | x _ { i } - x _ { j } | ^ { - 1 } + U, \end{equation*}
which acts on the anti-symmetric functions $\wedge ^ { N } L ^ { 2 } ( \mathbf{R} ^ { 3 } ; \mathbf{C} ^ { 2 } )$ (i.e., functions of space and spin). It used to be believed that $E ^ { \text{TF} }$ is asymptotically exact as $N \rightarrow \infty$, but this is not quite right; $Z \rightarrow \infty$ is also needed. Lieb and Simon [a7] proved that if one fixes $K$ and $Z _ { j } / Z$ and sets $R _ { j } = Z ^ { - 1 / 3 } R _ { j } ^ { 0 }$, with fixed $R _ { j } ^ { 0 } \in \mathbf{R} ^ { 3 }$, and sets $N = \lambda Z$, with $0 \leq \lambda < 1$, then
\begin{equation} \tag{a5} \operatorname { lim } _ { Z \rightarrow \infty } \frac { E ^ { \text{TF} } ( \lambda Z ) } { E ^ { \text{Q} } ( \lambda Z ) } = 1. \end{equation}
In particular, a simple change of variables shows that $E _ { \text{atom} } ^ { \text{TF} } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { \text{atom} } ^ { \text{TF} } ( \lambda , 1 )$ and hence the true energy of a large atom is asymptotically proportional to $Z ^ { 7 / 3 }$.
Likewise, there is a well-defined sense in which the quantum-mechanical density converges to $\rho _ { N } ^ { \operatorname {TF} }$ (cf. [a7]). The Thomas–Fermi density for an atom located at $R = 0$, which is spherically symmetric, scales as
\begin{equation*} \rho _ { \text { atom } } ^ { \text {TF} } ( x ; N = \lambda Z , Z ) = \end{equation*}
\begin{equation*} = Z ^ { 2 } \rho _ { \text { atom } } ^ { \operatorname{TF} } ( Z ^ { 1 / 3 } x ; N = \lambda , Z = 1 ). \end{equation*}
Thus, a large atom (i.e., large $Z$) is smaller than a $Z = 1$ atom by a factor $Z ^ { - 1 / 3 }$ in radius. Despite this seeming paradox, Thomas–Fermi theory gives the correct electron density in a real atom (so far as the bulk of the electrons is concerned) as $Z \rightarrow \infty$.
Another important fact is the large-$| x |$ asymptotics of $\rho _ { \text { atom } } ^ { \text{TF} }$ for a neutral atom. As $| x | \rightarrow \infty$, \begin{equation*} \rho _ { \text{atom} } ^ { \text{TF} } ( x , N = Z , Z ) \sim \gamma ^ { 3 } \left( \frac { 3 } { \pi } \right) ^ { 3 } | x | ^ { - 6 }, \end{equation*} independent of $Z$.
Again, this behaviour agrees with quantum mechanics — on a length scale $Z ^ { - 1 / 3 }$, which is where the bulk of the electrons is to be found.
In light of the limit theorem (a5), Teller's theorem can be understood as saying that, as $Z \rightarrow \infty$, the quantum-mechanical binding energy of a molecule is of lower order in $Z$ than the total ground state energy. Thus, Teller's theorem is not a defect of Thomas–Fermi theory (although it is sometimes interpreted that way) but an important statement about the true quantum-mechanical situation. For finite $Z$ one can show, using the Lieb–Thirring inequalities [a12] and the Lieb–Oxford inequality [a6], that $E ^ { \text{TF} } ( N )$, with a modified $\gamma$, gives a lower bound to $E ^ { \text{Q} } ( N )$.
Several "improvements" to Thomas–Fermi theory have been proposed, but none have a fundamental significance in the sense of being "exact" in the $Z \rightarrow \infty$ limit. The von Weizsäcker correction consists in adding a term \begin{equation*} \text{(const)} \int _ { {\bf R} ^ { 3 } } | \nabla \sqrt { \rho ( x ) } | ^ { 2 } d x \end{equation*} to ${\cal E} ( \rho )$. This preserves the convexity of ${\cal E} ( \rho )$ and adds $(\text{const})Z ^ { 2 }$ to $E ^ { \text{TF} } ( N )$ when $Z$ is large. It also has the effect that the range of $N$ for which there is a minimizing $\rho$ is extend from $[ 0 , Z ]$ to $[ 0 , Z + ( \text { const } ) K ]$. Another correction, the Dirac exchange energy, is to add \begin{equation*} - ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x \end{equation*} to ${\cal E} ( \rho )$. This spoils the convexity but not the range $[ 0 , Z ]$ for which a minimizing $\rho$ exists, cf. [a7] for both of these corrections. When a uniform external magnetic field $B$ is present, the operator $- \Delta$ in $H$ is replaced by \begin{equation*} | i \nabla + A ( x ) | ^ { 2 } + \sigma . B ( x ), \end{equation*} with $\operatorname{curl}A = B$ and $\sigma$ denoting the Pauli spin matrices (cf. also Pauli matrices). This leads to a modified Thomas–Fermi theory that is asymptotically exact as $Z \rightarrow \infty$, but the theory depends on the manner in which $B$ varies with $Z$. There are five distinct regimes and theories: $B \ll Z ^ { 4 / 3 }$, $B \sim Z ^ { 4 / 3 }$, $Z ^ { 4 / 3 } \ll B \ll Z ^ { 3 }$, $B \sim Z ^ { 3 }$, and $B \gg Z ^ { 3 }$. These theories [a8], [a9] are relevant for neutron stars. Another class of Thomas–Fermi theories with magnetic fields is relevant for electrons confined to two-dimensional geometries (quantum dots) [a10]. In this case there are three regimes. A convenient review is [a11]. Still another modification of Thomas–Fermi theory is its extension from a theory of the ground states of atoms and molecules (which corresponds to zero temperature) to a theory of positive temperature states of large systems such as stars (cf. [a5], [a14]).
References
'[a1] | R. Benguria, E.H. Lieb, "The positivity of the pressure in Thomas–Fermi theory" Comm. Math. Phys. , 63 (1978) pp. 193–218 ((Errata: 71 (1980), 94)) |
[a2] | E. Fermi, "Un metodo statistico per la determinazione di alcune priorieta dell'atome" Rend. Accad. Naz. Lincei , 6 (1927) pp. 602–607 |
[a3] | E.H. Lieb, "Thomas–Fermi and related theories of atoms and molecules" Rev. Mod. Phys. , 53 (1981) pp. 603–641 ((Errata: 54 (1982), 311)) |
[a4] | E. Teller, "On the stability of molecules in Thomas–Fermi theory" Rev. Mod. Phys. , 34 (1962) pp. 627–631 |
[a5] | J. Messer, "Temperature dependent Thomas–Fermi theory" , Lecture Notes Physics , 147 , Springer (1981) |
[a6] | E.H. Lieb, S. Oxford, "An improved lower bound on the indirect Coulomb energy" Internat. J. Quant. Chem. , 19 (1981) pp. 427–439 |
[a7] | E.H. Lieb, B. Simon, "The Thomas–Fermi theory of atoms, molecules and solids" Adv. Math. , 23 (1977) pp. 22–116 |
[a8] | E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of heavy atoms in high magnetic fields: I. lowest Landau band region" Commun. Pure Appl. Math. , 47 (1994) pp. 513–591 |
[a9] | E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of heavy atoms in high magnetic fields: II. semiclassical regions" Comm. Math. Phys. , 161 (1994) pp. 77–124 |
[a10] | E.H. Lieb, J.P. Solovej, J. Yngvason, "Ground states of large quantum dots in magnetic fields" Phys. Rev. B , 51 (1995) pp. 10646–10665 |
[a11] | E.H. Lieb, J.P. Solovej, J. Yngvason, "Asymptotics of natural and artificial atoms in strong magnetic fields" W. Thirring (ed.) , The stability of matter: from atoms to stars, selecta of E.H. Lieb , Springer (1997) pp. 145–167 (Edition: Second) |
[a12] | E.H. Lieb, W. Thirring, "Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities" E. Lieb (ed.) B. Simon (ed.) A. Wightman (ed.) , Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann , Princeton Univ. Press (1976) pp. 269–303 ((See also: W. Thirring (ed.), The stability of matter: from the atoms to stars, Selecta of E.H. Lieb, Springer, 1977)) |
[a13] | L.H. Thomas, "The calculation of atomic fields" Proc. Cambridge Philos. Soc. , 23 (1927) pp. 542–548 |
[a14] | W. Thirring, "A course in mathematical physics" , 4 , Springer (1983) pp. 209–277 |
Elliott H. Lieb
Copyright to this article is held by Elliott Lieb.
Thomas-Fermi theory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Thomas-Fermi_theory&oldid=55479