Difference between revisions of "Vitali-Hahn-Saks theorem"
m (details) |
(details) |
||
Line 7: | Line 7: | ||
{{TEX|semi-auto}}{{TEX|done}} | {{TEX|semi-auto}}{{TEX|done}} | ||
− | Let $\Sigma$ be a $\sigma$-algebra (cf. also [[Borel field of sets|Borel field of sets]]). Let $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ be a non-negative [[Set function|set function]] and let $\mu : \Sigma \rightarrow X$, where $X$ is a normed space. One says that $\mu$ is absolutely continuous with respect to $\lambda$, denoted by $\mu \ll \lambda$, if for every $\varepsilon | + | Let $\Sigma$ be a $\sigma$-algebra (cf. also [[Borel field of sets|Borel field of sets]]). Let $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ be a non-negative [[Set function|set function]] and let $\mu : \Sigma \rightarrow X$, where $X$ is a normed space. One says that $\mu$ is absolutely continuous with respect to $\lambda$, denoted by $\mu \ll \lambda$, if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $| \mu ( E ) | < \varepsilon$ whenever $E \in \Sigma$ and $\lambda ( E ) < \delta$ (cf. also [[Absolute continuity|Absolute continuity]]). A sequence $\{ \mu _ { n } \}$ is uniformly absolutely continuous with respect to $\lambda$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $| \mu _ { n } ( E ) | < \varepsilon$ whenever $E \in \Sigma$, $n \in \mathbf N$ and $\lambda ( E ) < \delta$. |
The Vitali–Hahn–Saks theorem [[#References|[a7]]], [[#References|[a2]]] says that for any sequence $\{ \mu _ { n } \}$ of signed measures $\mu _ { n }$ which are absolutely continuous with respect to a measure $\lambda$ and for which $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$ exists for each $E \in \Sigma$, the following is true: | The Vitali–Hahn–Saks theorem [[#References|[a7]]], [[#References|[a2]]] says that for any sequence $\{ \mu _ { n } \}$ of signed measures $\mu _ { n }$ which are absolutely continuous with respect to a measure $\lambda$ and for which $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$ exists for each $E \in \Sigma$, the following is true: | ||
Line 27: | Line 27: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <tr><td valign="top">[a1]</td> <td valign="top"> P. Antosik, C. Swartz, "Matrix methods in analysis" , ''Lecture Notes Math.'' , '''1113''' , Springer (1985)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> N. Dunford, J.T. Schwartz, "Linear operators, Part I" , Interscience (1958)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> H. Hahn, "Über Folgen linearer Operationen" ''Monatsh. Math. Physik'' , '''32''' (1922) pp. 3–88</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> R.S. Phillips, "Integration in a convex linear topological space" ''Trans. Amer. Math. Soc.'' , '''47''' (1940) pp. 114–145</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> C.E. Rickart, "Integration in a convex linear topological space" ''Trans. Amer. Math. Soc.'' , '''52''' (1942) pp. 498–521</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> S. Saks, "Addition to the note on some functionals" ''Trans. Amer. Math. Soc.'' , '''35''' (1933) pp. 967–974</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> G. Vitali, "Sull' integrazione per serie" ''Rend. Circ. Mat. Palermo'' , '''23''' (1907) pp. 137–155</td></tr> | + | <tr><td valign="top">[a1]</td> <td valign="top"> P. Antosik, C. Swartz, "Matrix methods in analysis" , ''Lecture Notes Math.'' , '''1113''' , Springer (1985)</td></tr> |
+ | <tr><td valign="top">[a2]</td> <td valign="top"> N. Dunford, J.T. Schwartz, "Linear operators, Part I" , Interscience (1958)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> H. Hahn, "Über Folgen linearer Operationen" ''Monatsh. Math. Physik'' , '''32''' (1922) pp. 3–88</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> R.S. Phillips, "Integration in a convex linear topological space" ''Trans. Amer. Math. Soc.'' , '''47''' (1940) pp. 114–145</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> C.E. Rickart, "Integration in a convex linear topological space" ''Trans. Amer. Math. Soc.'' , '''52''' (1942) pp. 498–521</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> S. Saks, "Addition to the note on some functionals" ''Trans. Amer. Math. Soc.'' , '''35''' (1933) pp. 967–974</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> G. Vitali, "Sull' integrazione per serie" ''Rend. Circ. Mat. Palermo'' , '''23''' (1907) pp. 137–155</td></tr> | ||
</table> | </table> |
Latest revision as of 07:39, 24 January 2024
Let $\Sigma$ be a $\sigma$-algebra (cf. also Borel field of sets). Let $\lambda : \Sigma \rightarrow [ 0 , + \infty ]$ be a non-negative set function and let $\mu : \Sigma \rightarrow X$, where $X$ is a normed space. One says that $\mu$ is absolutely continuous with respect to $\lambda$, denoted by $\mu \ll \lambda$, if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $| \mu ( E ) | < \varepsilon$ whenever $E \in \Sigma$ and $\lambda ( E ) < \delta$ (cf. also Absolute continuity). A sequence $\{ \mu _ { n } \}$ is uniformly absolutely continuous with respect to $\lambda$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $| \mu _ { n } ( E ) | < \varepsilon$ whenever $E \in \Sigma$, $n \in \mathbf N$ and $\lambda ( E ) < \delta$.
The Vitali–Hahn–Saks theorem [a7], [a2] says that for any sequence $\{ \mu _ { n } \}$ of signed measures $\mu _ { n }$ which are absolutely continuous with respect to a measure $\lambda$ and for which $\operatorname { lim } _ { n \rightarrow \infty } \mu _ { n } ( E ) = \mu ( E )$ exists for each $E \in \Sigma$, the following is true:
i) the limit $\mu$ is also absolutely continuous with respect to this measure, i.e. $\mu \ll \lambda$;
ii) $\{ \mu _ { n } \}$ is uniformly absolutely continuous with respect to $\lambda$. This theorem is closely related to integration theory [a8], [a3]. Namely, if $\{ f _ { n } \}$ is a sequence of functions from $L _ { 1 } ( [ 0,1 ] )$, where $\mu$ is the Lebesgue measure, and
\begin{equation*} \operatorname { lim } _ { n \rightarrow \infty } \int _ { E } f _ { n } d \mu = \nu ( E ) \end{equation*}
exists for each measurable set $E$, then the sequence $\{ \int f _ { n } d \mu \}$ is uniformly absolutely $\mu$-continuous and $\nu$ is absolutely $\mu$-continuous, [a3].
R.S. Phillips [a5] and C.E. Rickart [a6] have extended the Vitali–Hahn–Saks theorem to measures with values in a locally convex topological vector space (cf. also Locally convex space).
There are also generalizations to functions defined on orthomodular lattices and with more general properties ([a1], [a4]).
See also Nikodým convergence theorem; Brooks–Jewett theorem.
References
[a1] | P. Antosik, C. Swartz, "Matrix methods in analysis" , Lecture Notes Math. , 1113 , Springer (1985) |
[a2] | N. Dunford, J.T. Schwartz, "Linear operators, Part I" , Interscience (1958) |
[a3] | H. Hahn, "Über Folgen linearer Operationen" Monatsh. Math. Physik , 32 (1922) pp. 3–88 |
[a4] | E. Pap, "Null-additive set functions" , Kluwer Acad. Publ. &Ister Sci. (1995) |
[a5] | R.S. Phillips, "Integration in a convex linear topological space" Trans. Amer. Math. Soc. , 47 (1940) pp. 114–145 |
[a6] | C.E. Rickart, "Integration in a convex linear topological space" Trans. Amer. Math. Soc. , 52 (1942) pp. 498–521 |
[a7] | S. Saks, "Addition to the note on some functionals" Trans. Amer. Math. Soc. , 35 (1933) pp. 967–974 |
[a8] | G. Vitali, "Sull' integrazione per serie" Rend. Circ. Mat. Palermo , 23 (1907) pp. 137–155 |
Vitali-Hahn-Saks theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vitali-Hahn-Saks_theorem&oldid=55309