Difference between revisions of "Olevskii transform"
m (details) |
(latex done) |
||
Line 6: | Line 6: | ||
Out of 17 formulas, 15 were replaced by TEX code.--> | Out of 17 formulas, 15 were replaced by TEX code.--> | ||
− | {{TEX|semi-auto}}{{TEX| | + | {{TEX|semi-auto}}{{TEX|done}} |
The [[Integral transform|integral transform]] | The [[Integral transform|integral transform]] | ||
− | \begin{equation} \ | + | \begin{equation} \label{eq:a1} F ( \tau ) = |
− | |||
− | |||
+ | \frac{|\Gamma(c-a+\frac{i\tau}{2})|^2}{\Gamma(c)} \int_0^{\infty} x^{-a} (1+x)^{2a-c} {}_{2} F_{1} (a+\frac{i\tau}{2}, a-\frac{i\tau}{2} ; c ; -\frac{1}{x} )f(x) dx, | ||
+ | \end{equation} | ||
where ${}_{2} F_{1} (a, b ; c ; z )$ is a Gauss [[hypergeometric function]]. It was introduced by M.N. Olevskii in [[#References|[a1]]]. | where ${}_{2} F_{1} (a, b ; c ; z )$ is a Gauss [[hypergeometric function]]. It was introduced by M.N. Olevskii in [[#References|[a1]]]. | ||
− | Letting $a = 1 / 2$, one obtains the [[Mehler–Fock transform]]. By changing the variable $x = \operatorname { sinh } ^ { - 2 } t$ and the respective parameters of the Gauss function, one obtains the Fourier–Jacobi transform [[#References|[a2]]]. | + | Letting $a = 1/2$, one obtains the [[Mehler–Fock transform]]. By changing the variable $x = \operatorname {sinh} ^ { - 2 } t$ and the respective parameters of the Gauss function, one obtains the Fourier–Jacobi transform [[#References|[a2]]]. |
One can show that the Olevskii transform is the composition of the [[Kontorovich-Lebedev-transform(2)|Kontorovich–Lebedev transform]] and the Hankel transform (cf. [[Integral transform]]; [[Hardy transform]]). | One can show that the Olevskii transform is the composition of the [[Kontorovich-Lebedev-transform(2)|Kontorovich–Lebedev transform]] and the Hankel transform (cf. [[Integral transform]]; [[Hardy transform]]). | ||
− | The Gauss function in the integral | + | The Gauss function in the integral \eqref{eq:a1} is the hypergeometric series for $x > 1$ and for $0 < x \leq 1$ one can understand it as an [[analytic continuation]], which can be obtained from the Mellin–Barnes integral representation [[#References|[a3]]]. |
The following integral transform is also called the Olevskii transform. It is an integral over the index $\tau$ of the Gauss function, | The following integral transform is also called the Olevskii transform. It is an integral over the index $\tau$ of the Gauss function, | ||
− | \begin{equation} \ | + | \begin{equation} \label{eq:a2} F ( x ) = \frac { x ^ { - a } ( 1 + x ) ^ { 2 a - c } } { \Gamma ( c ) } \times |
− | + | \int _ { - \infty } ^ { \infty } \tau \left| \Gamma \left( c - a + \frac{i \tau} {2} \right) \right|^{2} \times {}_{2} F_{1} \left(a + \frac {i \tau} {2} , a - \frac {i \tau} {2} ; c ; - \frac {1} {x} \right) f (\tau) d \tau. \end{equation} | |
Here, $f$ is an arbitrary odd function belonging to the space $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$, where | Here, $f$ is an arbitrary odd function belonging to the space $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$, where | ||
Line 31: | Line 31: | ||
\begin{equation*} \omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } . \end{equation*} | \begin{equation*} \omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } . \end{equation*} | ||
− | The transform | + | The transform \eqref{eq:a2} maps this space onto the space $L_{2} ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ and the [[Parseval equality]] holds: |
− | |||
− | |||
− | \begin{equation*} = 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau. \end{equation*} | + | \begin{equation*} \int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } = 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau. \end{equation*} |
====References==== | ====References==== | ||
− | <table><tr><td valign="top">[a1]</td> <td valign="top"> M.N. Olevskii, "On the representation of an arbitrary function by integral with the kernel involving the hypergeometric function" ''Dokl. Akad. Nauk SSSR'' , '''69''' : 1 (1949) pp. 11–14 (In Russian)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> T.H. Koornwinder, "Jacobi functions and analysis on noncompact semisimple Lie groups" , ''Special Functions: Group Theoretical Aspects and Applications'' , Reidel (1984) pp. 1–85</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 7</td></tr></table> | + | <table> |
+ | <tr><td valign="top">[a1]</td> <td valign="top"> M.N. Olevskii, "On the representation of an arbitrary function by integral with the kernel involving the hypergeometric function" ''Dokl. Akad. Nauk SSSR'' , '''69''' : 1 (1949) pp. 11–14 (In Russian)</td></tr> | ||
+ | <tr><td valign="top">[a2]</td> <td valign="top"> T.H. Koornwinder, "Jacobi functions and analysis on noncompact semisimple Lie groups" , ''Special Functions: Group Theoretical Aspects and Applications'' , Reidel (1984) pp. 1–85</td></tr> | ||
+ | <tr><td valign="top">[a3]</td> <td valign="top"> S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 7</td></tr> | ||
+ | </table> |
Latest revision as of 07:46, 25 November 2023
\begin{equation} \label{eq:a1} F ( \tau ) = \frac{|\Gamma(c-a+\frac{i\tau}{2})|^2}{\Gamma(c)} \int_0^{\infty} x^{-a} (1+x)^{2a-c} {}_{2} F_{1} (a+\frac{i\tau}{2}, a-\frac{i\tau}{2} ; c ; -\frac{1}{x} )f(x) dx, \end{equation} where ${}_{2} F_{1} (a, b ; c ; z )$ is a Gauss hypergeometric function. It was introduced by M.N. Olevskii in [a1].
Letting $a = 1/2$, one obtains the Mehler–Fock transform. By changing the variable $x = \operatorname {sinh} ^ { - 2 } t$ and the respective parameters of the Gauss function, one obtains the Fourier–Jacobi transform [a2].
One can show that the Olevskii transform is the composition of the Kontorovich–Lebedev transform and the Hankel transform (cf. Integral transform; Hardy transform).
The Gauss function in the integral \eqref{eq:a1} is the hypergeometric series for $x > 1$ and for $0 < x \leq 1$ one can understand it as an analytic continuation, which can be obtained from the Mellin–Barnes integral representation [a3].
The following integral transform is also called the Olevskii transform. It is an integral over the index $\tau$ of the Gauss function,
\begin{equation} \label{eq:a2} F ( x ) = \frac { x ^ { - a } ( 1 + x ) ^ { 2 a - c } } { \Gamma ( c ) } \times \int _ { - \infty } ^ { \infty } \tau \left| \Gamma \left( c - a + \frac{i \tau} {2} \right) \right|^{2} \times {}_{2} F_{1} \left(a + \frac {i \tau} {2} , a - \frac {i \tau} {2} ; c ; - \frac {1} {x} \right) f (\tau) d \tau. \end{equation}
Here, $f$ is an arbitrary odd function belonging to the space $L _ { 2 } ( \mathbf{R} ; \omega ( \tau ) )$, where
\begin{equation*} \omega ( \tau ) = \frac { \tau } { \operatorname { sinh } ( \pi \tau ) } \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } \right| ^ { 2 } . \end{equation*}
The transform \eqref{eq:a2} maps this space onto the space $L_{2} ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ and the Parseval equality holds:
\begin{equation*} \int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } = 8 \pi ^ { 2 } \int _ { - \infty } ^ { \infty } \tau \operatorname { sinh } ( \pi \tau ) \left| \frac { \Gamma ( c - a + \frac { i \tau } { 2 } ) } { \Gamma ( a + \frac { i \tau } { 2 } ) } | ^ { 2 } \right| f ( \tau ) | ^ { 2 } d \tau. \end{equation*}
References
[a1] | M.N. Olevskii, "On the representation of an arbitrary function by integral with the kernel involving the hypergeometric function" Dokl. Akad. Nauk SSSR , 69 : 1 (1949) pp. 11–14 (In Russian) |
[a2] | T.H. Koornwinder, "Jacobi functions and analysis on noncompact semisimple Lie groups" , Special Functions: Group Theoretical Aspects and Applications , Reidel (1984) pp. 1–85 |
[a3] | S.B. Yakubovich, "Index transforms" , World Sci. (1996) pp. Chap. 7 |
Olevskii transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Olevskii_transform&oldid=54667